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Abstract—Embedded systems are everywhere, from home
appliances to critical systems such as medical devices. They
usually have associated timing constraints that need to be
verified. Here, we use an untimed bounded model checker to
verify timing properties of embedded C programs. We describe
an approach to specify discrete-time timing constraints using
code annotations. The annotated code is then automatically
translated to code that manipulates auxiliary timer variables
and is thus suitable as input to conventional, untimed software
model checkers such as ESBMC. Moreover, we can check
timing constraints in the same way and at the same time as
untimed system requirements, and even allow for interaction
between them. We applied the proposed method in a case
study, and verified timing constraints of a pulse oximeter, a
noninvasive medical device that measures the oxygen saturation
of arterial blood.

Keywords-Bounded model checker; timing constraints; code
verification

I. INTRODUCTION

Model checking is an automatic technique for verifying

finite state (concurrent) systems [5]. The main problem in

model checking is the well-known state space explosion;

adding real-time aspects to model checking only makes this

problem worse. Usually, real-time systems are modeled by

timed automata, timed Petri nets, or labeled state graphs, and

verified with specialized timed model checking tools, such

as TINA [1], HyTech [9], Kronos [19], or UPPAAL [11].

For example, UPPAAL uses timed automata as input and

a fragment of the TCTL temporal logic [17] to prove a

safety property in an explicit-state model checking style.

Here, we propose a different approach. In our method, the

safety property is specified in an explicit-time style [10],

using discrete-time timing annotations in single-threaded

ANSI-C programs. We assume that timing annotations are

given externally, either by a WCET analysis of the code,

or by a domain expert. We then translate automatically

such annotated C code into new code that manipulates

auxiliary timer variables. This code is suitable as input for

a conventional (i.e., untimed) software model checker; since

we are working with a discrete-time model, timing assertions

can simply be interpreted as integer constraints.

In this paper we are considering single-threaded software.

In our implementation, we use ESBMC [6], a bounded sym-

bolic model checker for ANSI-C which is based on satisfia-

bility modulo theories (SMT) techniques, while specialized

timed model checkers typically adopt an explicit-state style

(e.g., UPPAAL). Symbolic model checkers can typically ex-

plore more states than explicit-state model checkers, despite

some state-space reduction techniques [3]. Moreover, sym-

bolic model checking can easily be combined with powerful

symbolic reasoning methods such as decision procedures and

SMT solving [12]. This reduces not only the state space but

also allows us to handle timing constraints symbolically yet

precisely. Note that the timing annotations need to be treated

separately from the other assertions during loop unrolling

(which is a crucial step in bounded model checking) in order

to get correct results. We avoid this problem by annotating

only function definitions.

Many safety-critical software systems are written in low-

level languages such as ANSI-C. However, to the best of our

knowledge, there is at present no tool that translates C code

with timing constraints to either timed automata or timed

Petri nets. The main aim of this paper is to propose a method

to check timing properties directly in the actual C code

using a (conventional) software model checker. Thus, we

can check timing properties as well as safety and (untimed)

liveness properties (see [6]). The proposed solution should

not be considered as an alternative to other methods, but

rather as complementary. There are at least two scenarios

in which it can be used: (1) for legacy code that does not

have a model, or where there are no automated tools to

extract a faithful model from the code; and (2) when there

is no guarantee that the final code is in strict accordance

with the model. We illustrate our approach through an

industrial case study involving a medical device called a

pulse oximeter. Our experiments show that our technique can

be used efficiently for verifying embedded real-time systems

using an existing untimed model checker.
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The main contribution of this work is to describe an

approach to check timing properties in the same way as

safety and liveness properties for untimed systems. Specifi-

cally: we use code annotation to express timing properties;

we describe our automatic translation from the annotated

code to a code suitable for model checking; and we report

experiments on a medical device.

II. MODEL CHECKING WITH ESBMC

ESBMC is a context-bounded model checker for em-

bedded ANSI-C software based on SMT solvers, which

allows the verification of single- and multi-threaded software

with shared variables and locks [7], [6], although we focus

on single-threaded software here. ESBMC supports full

ANSI-C, and can verify programs that make use of bit-

level operations, arrays, pointers, structs, unions, memory

allocation and fixed-point arithmetic. It can efficiently rea-

son about arithmetic under- and overflows, pointer safety,

memory leaks, array bounds violations, atomicity and order

violations, local and global deadlocks, data races, and user-

specified assertions. Here we use ESBMC simply as a

“black-box”.

In ESBMC, the program to be analyzed is modelled as a

state transition system M = (S,R, s0), which is extracted

from the control-flow graph (CFG). S represents the set of

states, R ⊆ S×S represents the set of transitions (i.e., pairs

of states specifying how the system can move from state

to state) and s0 ⊆ S represents the set of initial states. A

state s ∈ S consists of the value of the program counter pc

and the values of all program variables. An initial state s0
assigns the initial program location of the CFG to pc. We

identify each transition γ = (si, si+1) ∈ R between two

states si and si+1 with a logical formula γ(si, si+1) that

captures the constraints on the corresponding values of the

program counter and the program variables.

Given the transition system M, a property φ, and a

bound k, BMC unrolls the system k times and trans-

lates it into a verification condition (VC) ψ such that ψ

is satisfiable if and only if φ has a counter-example of

length k or less. The VC ψ is a quantifier-free formula

in a decidable subset of first-order logic, which is then

checked for satisfiability by an SMT solver. In this work,

we are interested in checking safety properties of single-

threaded programs. The associated model checking problem

is formulated by constructing the following logical formula:

ψk = I(s0) ∧
∨k

i=0

∧i−1
j=0 γ(sj , sj+1) ∧ ¬φ(si). Here, φ

is a safety property, I the set of initial states of M and

γ(sj , sj+1) the transition relation of M between time steps

j and j+1. Hence, I(s0)∧
∧i−1

j=0 γ(sj , sj+1) represents the
executions of M of length i and ψk can be satisfied if and

only if for some i ≤ k there exists a reachable state at time

step i in which φ is violated. If ψk is satisfiable, then the

SMT solver provides a satisfying assignment, from which we

can extract the values of the program variables to construct

Figure 1. Overview of the Proposed Method

a counter-example. A counter-example for a property φ is a

sequence of states s0, s1, . . . , sk with s0 ∈ S0, sk ∈ S, and

γ (si, si+1) for 0 ≤ i < k. If ψk is unsatisfiable, we can

conclude that no error state is reachable in k steps or less.

III. PROPOSED METHOD

This section describes the method proposed to verify

timing properties on single-threaded C code. Figure 1 gives

an overview of the approach. It is divided into four steps.

The first step is to add timing constraints to the source

code. Such annotations come from either a discrete timing

model, a timing analyzer tool, or a domain expert. As usual,

the annotations are just comments that are processed by a

specific tool. The second step is the automatic translation

from the annotated source code to new code that can be

verified by the untimed model-checker. The third step is to

check the translated code with the ESBMC model checker.

Finally, the last step, evaluates ESBMC’s results. As shown,

we check timing properties using assertions.

A. Timed Programming Model

The proposed method aims to pragmatically assist devel-

opers in the specification and analysis of timing constraints

in C code. However, we are just considering a coarse-grained

timing constraint resolution on the level of functions. Thus,

what we propose is (i) to associate with each function fi a

worst-case duration di ≥ 0; (ii) to define explicit timer vari-

ables (or clocks) (T ), for expressing timing constraints; (iii)

to introduce assertions on timer variables to check timing

properties; and (iv) to introduce a reset operation to restart

the timers. Therefore, when the program is executed, the

timer variables are incremented by the respective duration

di of the called function fi, and assertions are used to ensure

that computations are within timing constraints.

Formally, we consider the semantics of a sequential pro-

gram P to be represented by the 5-tuple 〈S, s0,V,F ,→〉,
where:
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• S is a finite set of states of P;

• s0 is the initial state;

• V = {v1, v2, · · · , vz} is a finite set of data variables

(local and global);

• F = {f1, f2, · · · , fw} is a finite set of functions that

may change variables in V; we suppose that each

function fk is executed to completion;

• →⊆ S × F × S is a finite set of labeled transitions,

such that a state transition in 〈si, fk, sj〉, is represented

by si
fk−→ sj , ∀si, sj ∈ S, i 6= j, fk ∈ F .

Let π[n . . .m] for 0 ≤ n < m ∈ N be an execution path

denoted by a finite sequence sn
fk1−→ sn+1

fk2−→ · · ·
fkq

−→ sm
with m − n transitions and m − n + 1 states. As example,

suppose we have F = {f1, f2, f3, f4, f5}; we may define the

following execution path π[0..5] = s0
f1
−→ s1

f3
−→ s2

f5
−→

s3
f2
−→ s4

f1
−→ s5.

In order to introduce timing constraints into the program,

we change the original program P into another program

P ′ = 〈S, s0,V
′,F ,→, T ,A,R〉 where:

• T = {t1, t2, · · · , tp} is a finite set of timer variables,

with V ∩ T = ∅;
• A = 2T → {true, false}, where ai ∈ A is a special

function that asserts on timer variables;

• R = T → N, where ri is a special function that resets

a timer variable to a specific value, usually zero.

• V
′

= V ∪ T ;

We define D : F 7→ N as the worst-case duration of a

function, such that

D(fi), ∀fi ∈ F =











di ∈ N, if(fi ∈ F)

0, if(fi ∈ A)

0, if(fi ∈ R)
Therefore, we may express the duration D(π[n..m]) =

∑m

i=nD(fπ[i]) of such a finite sequence π[n..m] repre-

senting the time elapsed from sn to sm. As example,

suppose we have F = {f1, f2, f3, f4, f5}; T = {t1, t2};
A = {a1(t1), a2(t1), a3(t2)}; R = {r1(t1), r2(t2)}; and the

execution path π[0..11] = s0
r1(t1)
−→ s1

r2(t2)
−→ s2

f1
−→ s3

f3
−→

s4
a1(t1)
−→ s5

r1(t1)
−→ s6

f5
−→ s7

f2
−→ s8

a2(t1)
−→ s9

f4
−→ s10

a3(t2)
−→

s11. We can conclude that D(π[0..11]) =
∑11

i=1D(fπ[i]) =
D(f1) + D(f3) + D(f5) + D(f2) + D(f4). As we can

see, in the execution path π[0..11] we have three timing

assertions: a1(t1), a2(t1), and a3(t2); and three timer resets:

r1(t1), r2(t2), and r1(t1).

B. Annotation of Timing Constraints

The inclusion of timing constraints in the source code

is particularly interesting since they can automatically be

checked as the program is developed. To annotate the timing

constraints in the code we use a special kind of C comment

in such a way that this annotation does not change the code

itself. In this way, the same annotated code can be compiled

by any C compiler without breaking the compilation. The

proposal is to have four kinds of annotations:

• //@ DEFINE-TIMER <timer-name>. Defines a

new timer variable timer-name which is automatically

declared as an unsigned int variable. Using this anno-

tation we can add the set T to the code.

• //@ RESET-TIMER <timer-name>. Resets the

timer variable to zero. Using this annotation we can

add the set R to the code.

• //@ ASSERT-TIMER (<logic-expr>). Checks

a user defined assert. This annotation specifically is

useful to check timing properties, where the assertion

language consists in arithmetic operations with timer

variables. Using this annotation we can add the set A
to the code.

• //@ WCET-FUNCTION [<int-expr>]. Defines

the WCET of the next defined function. We rely on

a timing analyzer tool to predict worst-case timing

bounds (see [18]). Using this annotation we can add the

function D to the code. We show only how to specifiy

timing constraints in the source code on functions,

because we are just considering a coarse-grained

timing constraint resolution.

Fig. 2(a) shows an example of code annotation correspond-

ing to the example shown in Section III-A. Even though

all timer variables are incremented together, the fact that

we have defined more than one timer implies that we may

verify several timing constraints. In the example of Fig. 2,

TIMER1 is checking local timing constraints. Firstly, this

timer verifies timing constraint related to functions f1 and

f2, and later this same timer verifies over the functions f3
and f4. On the other hand, the timer variable TIMER2 is

used to verify the complete behavior of the system, i.e., the

function calls from f1 up to f5.

C. Translation and Verification

The translation looks for comments that start by //@

and treats them appropriately. The translation of the code

shown in Figure 2(a) can be seen in Figure 2(b). This

translation is carried out automatically by a specific tool.

It is important to emphasize that the user has first to run

the model checker to find conventional errors (e.g., buffer

overflow, arithmetic overflow, memory leaks, etc), and then

run the model checker to search for timing violations in

the translated code. After translation, this new code can be

analyzed by ESBMC using user-specified assert statements.

In the proposed method the assertions will be the way to

check timing properties. In the code of Figure 2(b) we

can see three timing verifications. It is worth pointing out

that the verification results depend on the accuracy of the

WCET estimates; in particular, if the WCET estimates are

not tight enough, the verification may fail but the program

may execute within the specified time limits.
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//@ DEFINE-TIMER TIMER1

//@ DEFINE-TIMER TIMER2

...

//@ WCET-FUNCTION [d1]

void f1(void)...

//@ WCET-FUNCTION [d2]

void f2(void)..

//@ WCET-FUNCTION [d3]

void f3(void)...

//@ WCET-FUNCTION [d4]

void f4(void)...

//@ WCET-FUNCTION [d5]

void f5(void)...

...

int main(int argc, char *argv[])

...

//@ RESET-TIMER TIMER1

//@ RESET-TIMER TIMER2

f1(); f2();

//@ ASSERT-TIMER (TIMER1 <= alpha)

//@ RESET-TIMER TIMER1

f3(); f4();

//@ ASSERT-TIMER (TIMER1 <= beta)

f5();

//@ ASSERT-TIMER (TIMER2 <= gamma)

...

(a)

// DEFINE-TIMER TIMER1

unsigned int TIMER1;

// DEFINE-TIMER TIMER2

unsigned int TIMER2;

...

// WCET-FUNCTION [d1]

void f1(void) {TIMER1 += d1; TIMER2 += d1;...}

// WCET-FUNCTION [d2]

void f2(void) {TIMER1 += d2; TIMER2 += d2;...}

// WCET-FUNCTION [d3]

void f3(void) {TIMER1 += d3; TIMER2 += d3;...}

// WCET-FUNCTION [d4]

void f4(void) {TIMER1 += d4; TIMER2 += d4;...}

// WCET-FUNCTION [d5]

void f5(void) {TIMER1 += d5; TIMER2 += d5;...}

...

int main(int argc, char *argv[])

...

// RESET-TIMER TIMER1

TIMER1 = 0;

// RESET-TIMER TIMER2

TIMER2 = 0;

f1(); f2();

// ASSERT-TIMER (TIMER1 <= alpha)

assert (TIMER1 <= alpha);

// RESET-TIMER TIMER1

TIMER1 = 0;

f3(); f4();

// ASSERT-TIMER (TIMER1 <= beta)

assert (TIMER1 <= beta);

f5();

// ASSERT-TIMER (TIMER2 <= gamma)

assert (TIMER2 <= gamma);

...

(b)

Figure 2. (a) Example of Annotated C Code; and (b) Translation Result

D. Verifying the Bridge Crossing Problem

The bridge-crossing problem is a mathematical puzzle

with real-time aspects [14]. Four persons, P1 to P4, have

to cross a narrow bridge. It is dark, so they can cross only if

they carry a light. Only one light is available and at most two

persons can cross at the same time. Therefore any solution

requires that, after two persons cross the bridge, one of them

returns, bringing back the light for any remaining person(s).

The four persons have different maximal speeds: Pi crosses

in ti time units (t.u.), and we assume that t1 ≤ t2 ≤ t3 ≤ t4.

When a pair crosses the bridge, they move at the speed

of the slowest person in the pair. Consider that t1 = 5;
t2 = 10; t3 = 20; and t4 = 25, the question is: how

much time is required before the whole group is on the

other side? Rote [14] pointed out that the most obvious

solution is to let the fastest person (P1) accompany each

other person over the bridge and return alone with the

lamp. In this case, the total duration of this solution is

t2 + t1 + t3 + t1 + t4 = 2t1 + t2 + t3 + t4 = 65 t.u.

However, the obvious solution is not optimal. The right way

to solve this problem is to let P3 and P4 cross in the middle,

i.e., as we have five crossing, P3 and P4 have to cross in

the third crossing. In this case, the new total duration is

t2 + t1 + t4 + t2 + t2 = t1 + 3t2 + t4 = 60 t.u.

We implemented the bridge crossing problem in C and

submitted it to the ESBMC model checker. Each con-

figuration of persons crossing the bridge was represented

by one C function with their respective WCET, which

corresponds to the speed of the slowest person in the pair.

Since the system can livelock (i.e. the same persons can

continuously cross back and forth), we may have an infinite

timing in the worst-case scenario. Thus, the main aim of

this experiment is to verify the best-case timing. We first

verified that the elapsed time cannot be less than 60. For

this, we included assume (timer<60); followed by

assert (FALSE); in the code. ESBMC failed to reach

the statement assert(FALSE) in the code, because there

is no execution path where the assumed condition can be

true. This shows that the best-case solution cannot be better

than 60 t.u. The ESBMC execution time was 12m43s to

give this result. We also verified that the elapsed time is

greater than or equal to 60 t.u. for all possible solutions

by adding assert(timer >= 60). ESBMC succeeded

on this, which means that the model checker found that

in all execution paths the asserted condition is true. With

these two results, we may conclude that 60 t.u. is thus the

optimal (best-case) solution. ESBMC spent 16m28s to give

this result. All experiments were conducted on an otherwise

idle Intel Xeon 5160, 3GHz server with 24 GB of RAM

running Linux OS. We chose ESBMC v.1.16 (64bits) as our

untimed bounded model checker.

IV. PULSE OXIMETER CASE STUDY

This section describes the main characteristics of the pulse

oximeter and shows results on the application of the model
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checker ESBMC to the verification of timing constraints.

The pulse oximeter is responsible for measuring the oxygen

saturation (SpO2) and heart rate (HR) in the blood system

using a non-invasive method. This device was used as case

study in [7] to raise the coverage of tests in embedded system

combining hardware and software components. The imple-

mentation is relatively complex, comprising approximately

3500 lines of ANSI-C code and 80 functions.

Architecture. The architecture consists of four compo-

nents: sensor, data acquisition module, microcontroller, and

LCD display. The sensor captures oxygen saturation and

heart rate data of the patient. The data acquisition module

has an interface for communication with the sensor, an

ASIC (Application-Specific Integrated Circuit) component,

and a serial communication interface (RS-232). The ASIC

component provides the values of SpO2 and HR data in

the serial port. The microcontroller receives this data, via

the serial port, processes it, and displays it on the LCD. A

serial data frame consists of five bytes; and a packet consists

of 25 frames. Three packets (375 bytes) are transmitted each

second. Byte2 of each frame is the status byte (whether the

sensor is not connected, for instance). Byte4 represents HR

and SpO2 data; and Byte5 is the checksum.

Timing Constraints. In the context of timing constraints,

the following functional requirements are considered: (i) The

system has to read all HR and SpO2 data in at most one

second. (ii) The software must check whether the frames

sent by the sensor are correct (i.e., no checksum and status

errors), and show in the LCD if any problem is found;

(iii) The user should be able to see, every second, the data

of heart rate and oxygen saturation in the patient’s blood;

and we have to store patient’s information and to show

in the LCD display. (iv) The system must allow users to

store data on HR and SpO2 in the external memory of the

microcontroller. In order to reach timing constraints we have

to take into account several important questions, such as,

the maximum frequency of the serial communication (in this

case 9600bps), the amount of bytes sent by the sensor device,

the time it takes to store data in the external memory, and

the time to calculate and to show checksum/status errors.

Code Annotation. The timing constraints for this project

are shown in Table I. They come from either the specification

or a domain expert. As presented before (see Section III-B),

these timing constraints are annotated into the code.

Verification Results. The pulse oximeter code is part of a

real implementation. The code adopted, and the verification

results are publicly available at http://esbmc.org. In order

to verify the timing constraints using ESBMC, we had to

isolate hardware-dependent code. With this aim we used

#if, #else, and #endif preprocessor directives. This

experiment verifies if in all execution paths the timing

constraints are met when implementing the four functional

requirements (FR1, FR2, FR3, and FR4). This program

behavior is explained as follows: The specification considers

Table I
TIMING INFORMATION

ID Function Description WCET(µs)

f1 receiveSensorData receives data from the sensor 1000
f2 checkStatus checks status 700
f3 printStatusError displays status error 10000
f4 checkSum calculates checksum 2000
f5 printCheckSumError displays checksum error 10000
f6 storeHRMSB stores HR data 200
f7 storeHRLSB stores HR data 200
f8 storeSpO2 stores SpO2 data 200
f9 averageHR calculates average of HR data 800
f10 averageSpO2 calculates average of SpO2 data 800
f11 getHR returns the stored HR value 200
f12 getSpO2 returns the stored SpO2 value 200
f13 printHR displays HR on the LCD 5000
f14 printSpO2 displays SpO2 on the LCD 5000
f15 insertLog inserts HR/SpO2 in RAM 500

Table II
EXPERIMENTAL RESULTS

ID % Checksum Error Time(s) Result

1 0% 28.9 successful
2 10% 20.3 successful
3 20% 20.2 successful
4 30% 19.9 successful
5 40% 19.9 failed
6 50% 21.1 failed
7 100% 30.2 failed

that we should read three packets of data per second. Each

packet has twenty five frames. Each frame has five bytes. In

this way we have to:

1) read data bytes calling function receiveSensorData;

2) for each byte read: (a) to check status of the second

byte of each frame by calling function checkStatus; if

there is an error, the function printStatusError should

be called; (b) to check the fifth byte of each frame

by calling function checkSum; if there is an error,

it should be called the function printCheckSumError;

(c) to read the fourth byte of first frame and to call

function storeHRMSB; (d) to read the fourth byte of

second frame and to call function storeHRLSB; and

(e) to read the fourth byte of third frame and to call

function storeSpO2.

3) call the functions average HR, average SpO2, getHR,

getSpO2, printHR with HR value as argument,

printSpO2 with SpO2 value as argument, insertLog

with HR value as argument, and insertLog with SpO2

value as argument.

Figure 3 shows part of the pulse oximeter code submitted

to ESBMC. Table II shows the experimental results. We

analyzed seven scenarios, taking into account the percentage

of checksum errors. The percentages considered were 0%,

10%, 20%, 30%, 40%, 50%, and 100%. Excepting the

best scenario (0%) and worst scenario (100%), all timing

performance was 20s in average. As presented in Table II,

the experiments show that the system will reach timing
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...
// DEFINE-TIMER TIMER;
unsigned int TIMER;
...
//@ WCET-FUNCTION [5000]
void printHR (unsigned int line, unsigned int valueHR)
{
TIMER += 5000;

char sHR[16];
sprintf(sHR, "HR:%d\n", valueHR);
printLCD(sHR, line, 1);

}
...
int main(void) {
...
// RESET-TIMER TIMER;
TIMER=0;
...

for (k=0; k<3; k++) {
for (j=0; j<25; j++) {

for (i=0; i<5; i++) {
Byte[i] = receiveSensorData();
if ((i==1) && (checkStatus(Byte[i])))

printStatusError(LINE1);
if ((i==4) && (checkSum(Byte)))

printCheckSumError(LINE2);
if (i==3) {

if (j==0) storeHRMSB (Byte[i], k);
if (j==1) storeHRLSB (Byte[i], k);
if (j==2) storeSpO2 (Byte[i], k);

}
}

}
}

averageHR();
averageSpO2();
HR = getHR();
SpO2 = getSpO2();
printHR(LINE1, HR);
printSpO2(LINE2, SpO2);
insertLog(HR);
insertLog(SpO2);

// ASSERT-TIMER (TIMER < 1000000) // one second;
assert (TIMER < 1000000);
...

}

Figure 3. Code for running in the ESBMC model-checker

constraints up to 30% of checksum errors.

V. RELATED WORK

Lamport [10] argues that most real-time specifications

can be verified using existing languages and methods. He

proposed to represent time as an ordinary variable, in this

case variable now, which is incremented by an action

(Tick), and express timing requirements with a special

timer variable in such a way that such specifications can

be verified with an conventional model checker. He calls

this method as model checking explicit-time specifications.

We follow the same general approach. However, Lamport

proposes to specify the system and timing constraints using

TLA+ (Temporal Logic of Actions), which is a high-level

mathematical language. The problem is that the learning

curve of TLA+ may be steep.

Ostroff and Ng [13] present a framework that allows

specification and verification of discrete real-time properties

of reactive systems. They consider a Timed Transition Model

(TTM) as underlying computational model, and Real-Time

Temporal Logic (RTTL) as the requirements specification

language. They map the model and specification into a

finite state fair transition systems, which may be input to

a (untimed) tool, in this case STeP model-checker [2], for

checking timing properties. One problem of this method is

that the size of the formulas grow according to the bounds

that must be checked. Since the cost of checking a linear

time formula is exponential in the size of the formula, these

procedures are only useful for small bounds.

Chun and Hung [4] propose a new class of Duration

Calculus (DC) called DC∗
≤1, whose formulas correspond to

expressions over the set of state occurrence for one time unit

(or less). They adopt conventional variables to implement

relative time. They model the real-time system using DC

and convert its components into DC∗
≤1 specifications. Each

DC∗
≤1 specifications is translated to an automata model. In

this way, the whole system is modeled by the synchroni-

sation of several automatas. Later, the resulting automata

is translated to the Promela language. However, it is not

clear what timing constraint was verified in the case study

(Biphase Mark Protocol).

Ganty and Majumdar [8] show that checking safety prop-

erties for real-time event-driven programs is undecidable.

The undecidability proof for the safety checking problem

uses an encoding of the execution of a 2-counter machine

as a real-time event-driven program. They suggest to use

higher-level languages, such as Giotto, which statically

restricts the ability to post tasks arbitrarily. In this case, these

higher-level languages ensure that for any program, at any

point of the execution, there is at most a bounded, statically

determined, number of pending calls. In this case, just by

finiteness of the state space, all verification problems are

decidable.

Sifakis et al. [16] proposed a modeling methodology for

real-time systems programmed in the Esterel synchronous

language extended with timing constraints specified as anno-

tations. The program is compiled with the Esterel compiler

SAXO-RT that generates sequential C code, where such

code is instrumented by best and worst execution times

provided by annotations. The execution of the instrumented

C code generates the timed automaton model of the system,

which is verified by KRONOS [19] timing verifier. There are

some similarities with our work. They propose annotations

to specifiy timing constraints in the code, and they also

considered just single-threaded code. Nevertheless, the dif-

ference is that they adopt Esterel as input language, while we

adopt the C language. They had to generate a timed automata

model to verify the Esterel code using the Kronos model

verifier, while our work remains on the implementation level.

The input of the related work analyzed are: Temporal

Logic of Actions (TLA) specifications, Timed Transition

Model + Real-Time Temporal Logic (TTM/RTTL), Duration

Calculus (DC), Giotto programs, and Esterel programs. To

the best of our present knowledge, there is no work to verify

timing constraints directly in the actual C code without

explicitly translating to a high level model.

VI. CONCLUSIONS AND FUTURE WORK

Model checking is often used for finding errors rather

than for proving that they do not exist [15]. However, model
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checkers are capable of finding errors that are not likely to

be found by simulation or test. The reason is that unlike

simulators/testers, which examine a relatively small set of

test cases, (bounded) model checkers consider all (up to the

specified bounds) possible behaviors of the system. This pa-

per described how to use an untimed software model checker

to verify timing constraints in C code. In our proposed

method we use the C language because it is one of the most

common implementation language of embedded systems. As

far as we are aware, there is no other approach that deals

with model-checking timing constraints directly in the actual

C code without explicitly generating a high-level model.

We specified the timing behavior using an explicit-time

code annotation technique for verifying timing properties

using ordinary model checkers. The main advantage of an

explicit-time approach is the ability to use languages and

tools not specially designed for real-time model checking.

As pointed out by Lamport [10] “the results reported that

verifying explicit-time specifications with an ordinary model

checker is not very much worse than using a real-time model

checker”.

Experimental results have shown that the proposed

method is promising, mainly because it is now possible to

verify timing constraints in the C code. Hence, we are just

following a movement towards the application of formal

verification techniques to the implementation level. In this

case, we avoid constructing models explicitly and go directly

to code verification. As presented before, this method is

particularly interesting when taking into account legacy

code. However, we argue that our proposed method is not

an alternative to methods currently available in the literature,

but complementary. We also show that using our proposed

method it is possible to investigate several scenarios.

Although we believe that most embedded systems are

still single-threaded programs, as future work we plan to

consider multi-threaded code, which is also supported by

ESBMC, and to extend the code annotation method to

consider fine-grained timing constraints by adding timing

duration in individual instructions or blocks, and to add

bounds for loops. In this way, more sophisticated annotation

mechanisms will allow us to express context-dependent

execution time bounds.

ACKNOWLEDGMENT

The authors acknowledge the support granted by FAPESP

process 08/57870-9, CAPES process BEX-3586/10-3, and

by CNPq processes 575696/2008-7, and 573963/2008-8.

This research was conducted while the first author was

visiting the University of Southampton.

REFERENCES

[1] B. Berthomieu and F. Vernadat, “Time petri nets analysis
with tina,” in Int. Conf. on the Quantitative Evaluation of
Systems. IEEE Computer Society, 2006, pp. 123–124.

[2] N. S. Bjørner, A. Browne, M. A. Colón, B. Finkbeiner,
Z. Manna, H. B. Sipma, and T. E. Uribe, “Verifying temporal
properties of reactive systems: A STeP tutorial,” Formal
Methods in System Design, vol. 16, pp. 227–270, June 2000.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang, “Symbolic model checking: 10

20 states
and beyond,” Information and Computation, vol. 98, pp.
142–170, June 1992.

[4] K. Y. Chun and D. V. Hung, “Verifying real-time systems
using untimed model checking tools,” The United Nations
University. Tech. Report UNU-IIST 302, June 2004.

[5] E. Clarke, O. Grumberg, and D. Peled, Model Checking. The
MIT Press, January 2000.

[6] L. Cordeiro and B. Fischer, “Verifying Multi-threaded Soft-
ware using SMT-based Context-Bounded Model Check-
ing,” in International Conference on Software Engineering
(ICSE’2011). ACM/IEEE, May 21-28 2011, pp. 331–340.

[7] L. Cordeiro, B. Fischer, H. Chen, and J. Marques-Silva,
“Semiformal verification of embedded software in medical
devices considering stringent hardware constraints,” in Int.
Conf. on Emb. Soft. and Systems (ICESS’09). pp. 396–403.

[8] P. Ganty and R. Majumdar, “Analyzing real-time event-driven
programs,” in Int. Conf. Formal Modeling and Analysis Timed
Systems (FORMATS’09), 2009, pp. 164–178.

[9] T. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model
checker for hybrid systems,” Software Tools for Technology
Transfer, vol. 1, pp. 460–463, 1997.

[10] L. Lamport, “Real-time model checking is really sim-
ple,” in Correct Hardware Design and Verification Methods
(CHARME’05), LNCS 3725, October, 3-6 2005, pp. 162–175.

[11] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a
Nutshell,” Int. Journal on Software Tools for Technology
Transfer, vol. 1, no. 1–2, pp. 134–152, Oct. 1997.

[12] L. D. Moura and N. Bjrner, “Z3: An efficient smt solver,”
Tools and Algorithms for the Construction and Analysis of
Systems, LNCS 4963, pp. 337–340, 2008.

[13] J. Ostroff and H. Ng, “Verifying real-time systems with
standard theories,” in In AMAST Workshop on Real-Time
Systems, 2000.

[14] G. Rote, “Crossing the bridge at night,” EATCS Bulletin,
vol. 78, pp. 241–246, October 2002.

[15] B. Schlich and S. Kowalewski, “Model checking C source
code for embedded systems,” Software Tools for Technology
Transfer, vol. 11, no. 3, pp. 187–202, June 2009.

[16] J. Sifakis, S. Tripakis, and S. Yovine, “Building models of
real-time systems from application software,” In Proceedings
of the IEEE, vol. 91, pp. 100–111, January 2003.

[17] F. Wang, G.-D. Huang, and F. Yu, “TCTL inevitability
analysis of dense-time systems: From theory to engineering,”
IEEE Trans. Softw. Eng., vol. 32, pp. 510–526, July 2006.

[18] R. Wilhelm et. al., “The worst-case execution-time problem:
overview of methods and survey of tools,” ACM Trans. Emb.
Comp. Systems, vol. 7, pp. 36:1–36:53, May 2008.

[19] S. Yovine, “Kronos: A Verification Tool for Real-Time Sys-
tems,” International Journal on Software Tools for Technology
Transfer, vol. 1, pp. 123–133, 1997.

52525252


