Fine-Grained Role- and Attribute-Based Access
Control for Web Applications

Seyed Hossein Ghotbi and Bernd Fischer

University of Southampton
{shg08r,b.fischer}@ecs.soton.ac.uk
http://www.soton.ac.uk

Abstract. Web applications require an access control mechanism such
as role-based access control to enforce a set of policies over their shared
data. An access control model that is based on the desired security prop-
erties is thus a core security aspect, and the development of such models
and their mechanisms are a main concern for secure systems develop-
ment. Fine-grained access control models provide more customization
possibilities and administrative power to the developers; however, in
Web applications the corresponding policies are typically hand-coded
without taking advantage of the data model, object types, or contextual
information. This paper presents and evaluates PRBAC, a declarative,
fine-grained role- and attribute-based access control model which is im-
plemented by code generation. The generator uses a translation into
logical satisfiability problems to check the #RBAC model for correctness
and completeness, and against independently defined coverage criteria.
If the model passes these tests, the generator then compiles it down to
the existing tiers of WebDSL, a domain-specific Web programming lan-
guage. We describe the test and code generation phases, and show the
application of PRBAC to the development of a departmental Web site.

Key words: Fine-grained access control; RBAC; attribute constraints;
access control testing; Web application security; language design

1 Introduction

Web applications, such as Facebook, are deployed on a set of servers and are
easily accessible via any Web browser through an Internet connection. As the
number of users of a Web application grows, its security and the privacy of the
users’ data become major concerns [5], and access to shared data needs to be
controlled based on a set of specific policies via one of the many types of access
control such as discretionary, mandatory, or role-based access control [24].

For reasons such as maintainability and cost effectiveness [4], role-based ac-
cess control (RBAC) is the most widely used [14] access control mechanism.
RBAC [8] uses the notion of role as the central authorization element; other
components of the system such as subjects and permissions (describing the al-
lowed operations on objects) are assigned to one or more roles. Over the last

2 Seyed Hossein Ghotbi, Bernd Fischer

two decades RBAC has been extended by different types of attributes, such as
temporal [2] or content-based [10] attributes, which allow more secure and flex-
ible policies [19]. For example, with time constraints such as in TRBAC [2] the
developer can limit access by the users of the system to a certain period of time
such as office hours. This lowers the risk of system abuse outside office hours.

Web applications typically consist of elements that have different granularity
levels and are scattered throughout the application code, which makes access
control more difficult. For example, a web page can contain smaller elements
such as sections or even individually controlled cells of a table. Currently, de-
velopers need to hand-code the access control elements around the objects that
require access control, using languages such as Scala [17], XACML [1], or Pon-
der [6]. However, such approaches have three main drawbacks that complicate
development of fine-grained access control and can easily lead to security holes.
First, they lack the right abstraction level to define flexible access control models
that allow the specification of different policies for different individual objects.
Second, they lack a separation of concerns [32] between access control and ap-
plication [3]. If we can develop the access control components separately, we
can check for potential vulnerabilities separately and mechanically, instead of
manually analyzing the access control checks in the application code, which is
an error-prone and time consuming process. Third, they lack a code generation
mechanism that can automatically translate the specified abstract access con-
trol model into corresponding access control checks and weave these into the
application to enforce the model without introducing coding errors.

Although testing the access control model is essential [23, 20, 21], testing the
model on its own is not enough. Any access control is defined to cover a set
of objects in an application. Therefore, the testing mechanism should also take
the target application, with the woven-in access control checks, into considera-
tion. The testing phase should thus first mechanically verify the correctness and
completeness of access control model itself and then validate the application
code based on a set of test cases. These test cases should cover a set of objects
and policy scenarios for which a correct outcome gives the developer sufficient
confidence that the deployed access control model is appropriate for the given
application. For example, the system should produce more restrictive test cases
for a medical application than for an internet forum.

This paper describes PRBAC, a fine-grained RBAC with additional attribute-
based constraints for the domain of Web applications. It provides a novel mech-
anism for declaratively defining RBAC policies and test objectives over a range
of objects with different granularity levels within a single model. This model can
be formally analyzed and verified. PRBAC is implemented on top of WebDSL
[30], a domain-specific language for Web application development. PRBAC uses
code generation techniques weave access control checks around the objects within
the application code written in WebDSL. We describe the test and code gen-
eration phases, and show the application of PRBAC to the development of a
departmental Web site.

Fine-Grained Role- and Attribute-Based Access Control 3

2 Background and Related Work

2.1 Role-based Access Control with Additional Attributes

RBAC belongs to the grouping privileges class of access control models [24]. In
this class privileges are collected based on common aspects, and then autho-
rizations are assigned to these collections. The fundamental advantage of using
a grouping privileges model is that it factors out similarities, and so handles
changes better, which leads to an easier authorization management [11]. RBAC
is used in many domains and there are number of languages that support RBAC
[14,1,6]. RBAC uses the notion of role as the central authorization mechanism
[8]. Intuitively, a role is an abstract representation of a group of subjects that are
allowed to perform the same operations, on behalf of users, on the same objects.
For example, in an RBAC model we can define a role supervisor and state that
any user with this role can edit marks, while users with the role student can
only read them. The other main elements of RBAC are subjects, objects, and
permissions. A subject is the representation of an authorized user, an object is
any accessible shared data and a permission refers to the set of allowed opera-
tions on objects. In the example above, the subject could actually be a session
that belongs to the user after authentication and the permissions describe the
allowed operations on the marks objects. Adding attributes (such as time, date,
or location) to RBAC is beneficial and well studied [10, 19, 2], because it leads
to more flexibility in the model and solves a set of the core RBAC shortcomings.
Core RBAC has been standardized by the National Institute of Standards and
Technology (NIST) [25], but despite a recent study trying to unify attribute-
based access control models [19] there is no common ground yet.

Fine-Grained Access Control In the existing literature, the notion of fine-
grained access control refers only to models that can control access to fine-
granular objects but where the policies themselves remain coarse-grained, and
thus lack flexibility. For example, a number of studies [27, 34] discuss fine-granular
access control in the context of databases in terms of the table structure (i.e.,
columns, rows, etc.), while others [18,26] discuss it in the context of XML and
the hierarchical structure of XML documents. Our notion is related to both ob-
jects and access control, so that the access control model itself becomes more
flexible and can provide a more efficient development environment.

Typically, objects are scattered throughout the application code; therefore,
if the programmer writes the access control component by hand or uses access
control approaches such as XACML, the access control checks will be scattered
throughout the application code as well [1]. This is not suitable from many
points of views. From a design point of view, it is hard to track the access
rights for each object wherever it occurs within the application, and to reason
conclusively about its access control checks. From an implementation point of
view, coding and maintenance of the code will be time-consuming and error-
prone [33]. Finally, from a testing point of view it is hard for the tester to figure
out the usage coverage of hard-coded access control checks.

4 Seyed Hossein Ghotbi, Bernd Fischer

Testing Access Control Models Access control as a software component
needs to be tested [28]. Testing needs to consider three aspects of an access
control model, correctness, completeness and sufficiency. First, an access control
model needs to be correct so that we can derive the required access control
predicates for controlled objects. Since RBAC has a standard and therefore its
semantics is well defined and understood, the correctness of any defined model
should be checked based on the standard. Second, the completeness check of
an access control model is essential. A complete access control model covers all
possible outcomes of its defined policies with respect to the RBAC structure. For
example, if we have student and teacher as two roles in an access control model
and there is a static separation of duty between them, then the model only needs
to cover three cases to be complete: first, teacher is active but not student,
second, teacher is not active but student is and third, neither of them are
active. The sufficiency of an access control depends on its target application and
should therefore be defined by the developer. For example, a developer might
define an access control model in a way that gives too much power to a user (the
so-called the super-user problem [9]). In this case, the developer might check
the application sufficiency against a set of objectives and discover this issue
before application deployment. We will discuss the correctness, completeness
and sufficiency checks of PRBAC in Section 3.2.

2.2 WebDSL

WebDSL [30] is a high-level domain-specific language (DSL) for creating dy-
namic Web applications [13]. It provides developers with the notion of entities
for defining a data-model and enforcing data validation on those entities [12].
Listing 1.1 shows an example. The properties of an object are specified by their
name and their type. Types can describe values, sets, and composite associa-
tions; in particular, the type of a property can be another entity. For example,
in the data model shown in Listing 1.1 the tutor property is of type Teacher,
and marks is a property that holds a set of Mark entities.

Listing 1.1. Student Entity in WebDSL

entity Student{

studentID :: String (name)

courses —> Set<Course>

tutor —> Teacher

marks <> Set<Mark> (inverse = Mark.students)

}

The WebDSL compiler is implemented using SDF [15] for its syntax definition
and Stratego/XT [29] for its transformation rules. It consists of a number of
smaller DSLs (e.g., user interface, access control) that are structured around a
core layer. It uses code transformation techniques [16] to transform the WebDSL
code to mainstream Web application files (HTML, JavaScript, etc.). It uses these
together with other provided layout resources (image, CSS, etc.) to compile and
package to a server-deployable WAR file.

Fine-Grained Role- and Attribute-Based Access Control 5

Even tough WebDSL increases the level of abstraction during development, it
has two main shortcomings that our work here addresses. First, it does not sup-
port fine-grained attribute-based RBAC. WebDSL has a powerful data model,
and even supports the validation of input data, but its RBAC model is oriented
towards the presentational elements (i.e., pages and templates), rather than the
data model, and remains coarse-grained. Moreover, if the developer wants to
add attributes to the RBAC model, she needs to hardcode the policy within the
application code. Second, it does not check the correctness of the defined RBAC
model elements nor their implementation within the application code.

3 @YRBAC

PRBAC is an approach for declaratively defining and implementing a flexible,
expressive, and high-level RBAC mechanism on top of WebDSL. It generates
access control elements and then weaves them into the application code in order
to enforce the access control on fine-grained elements of the data model, instances
of the data, and template and page elements. Moreover, it provides a testing
mechanism to check the correctness of the model itself and with regard to its
application. In this section we introduce the language by means of an example.

3.1 Access Control Model

As Listing 1.2 shows, a PRBAC model consists of three main sections: basic
RBAC elements (lines 2-5), policy cases (lines 7-11) and coverage (lines 14-18).

Listing 1.2. #RBAC Example

1 PhiRBAC/{

2 roles{teacher (10),admin(1),manager (1), advisor (10),student (*)}

3 hierarchy{advisor —> teacher}

4 ssod{(teacher ,admin, advisor ,manager) <—> student}

5 dsod{(and(advisor ,teacher),admin) <—> manager}

6

7 objects{G(roleAssignment),XML(address),Person.password ,P(marks)}
8 policies{teacher ,student ,admin, advisor ,Self.username == ”faz”,

9 This. User.location != "New York”,Sys.Time(>=9:00,<=17:00)}
10 cases{ (+,—,—,7,+,7,—) —> ([r,u],[r],[s],[r,u]),

11 (—m 2= +4) = ([roul (] 0s]i(iD)

13 coverage {

14 objects{P(root),student.marks}

15 policies{admin, teacher}

16 cases { (+,7) —> ([r,100],[i]), (=) => ([i],[u,(>80,<=100)])}

Basic RBAC Elements At the core of an ?RBAC model are the basic RBAC
elements. The developer first defines roles and their cardinalities (cf. line 2),
which specify the maximum number of subjects that may acquire the respective
roles at any given time. The developer can also define an optional role hierarchy.
In the example, the advisor role is defined as a specialization of teacher (cf. line

6 Seyed Hossein Ghotbi, Bernd Fischer

3). In addition, the developer can define optional separation of duty (SOD)
constraints [25] (cf. lines 4 and 5). Static SOD (SSOD) constraints affect the role
assignment (e.g., the roles admin and student can never be assigned to the same
subject) while dynamic SOD (DSOD) constraints affect the role activation. For
example, the DSOD constraint in Listing 1.2 states that a subject cannot activate
the manager role together with either admin or both advisor and teacher roles.
We then use a matrix-structure to specify the actual access control policy as well
as the test case coverage. The matrix’ rows and columns labels are given as the
set of controlled objects and the different policy terms, while the entries of the
matrix are given line-by-line as policy cases. These show the relation between
the policy combinations and allowed operations on the respective objects.

Controlled Objects PRBAC supports access control of objects with different
types and granularity levels. We can divide them into data model, page, and
template elements. The application’s data structure is defined in a data model,
which is then translated into a database type, such as tables in a relational
database. The main benefit of using the data model as a part of controlled
objects is that we can define access control on the data model elements with-
out considering where or by whom they are used within the application code.
PRBAC thus allow the data model elements as part of its controlled objects. It
supports both coarse-grained elements such as the student entity shown in List-
ing 1.2 or more fine-grained components such as speaker property of an entity
Seminar. It is important to note that @RBAC consequently supports relations,
such as inheritance, between data-model components as well. For example, the
type of the speaker property can be the Person entity. If this entity is access-
controlled, then PRBAC automatically adds all the access control predicates
from the Person entity to speaker’s predicate. However, the different proper-
ties and entities to be joined may have conflicting access control predicates,
which can make a controlled object inaccessible. Such conflicts are checked dur-
ing PRBAC’s testing phase.

Since we do not want to force the developer to use PRBAC and the ex-
isting WebDSL access control to declare two different types of access control
model, the coarse-grained components (i.e., pages and templates) are also sup-
ported within our model as controlled objects. Moreover, we support more fine-
grained components of pages and templates. For page elements the developer
can use G(GroupNames) to define a set of group names and B(BlockNames) to
define the block names which are used by an external CSS style. In WebDSL we
can use XML hierarchies within the template code, and the developer can use
XML(NodeNames) to declare a set of XML node names as controlled objects.

Policy Terms A policy term is an atomic access control check which can be
used as building block in more complex policies. In @RBAC there are two types
of policy terms. First, the developer can use a subset of the roles that were
defined. Second, user, data, or system attributes can also be used as policy terms.
In our example, the policy term Self.username == "faz" defines an access

Fine-Grained Role- and Attribute-Based Access Control 7

control check based on the current user (which is represented in PRBAC as Self)
with the username property faz. The policy term This.User.location !'= "New
York" defines an access control check based on a data attribute: for every object
(represented by This) of the given type User that is used in the application, the
property location is checked against the given value (i.e., New York). PRBAC
allows the usual comparison operators, including a range restriction. For example
in 1.2 the last policy (cf. line 9), creates an access control check for the system’s
office hours. The actual policy is then defined case-by-case, dependent on the
logical status of the policy terms. The logical status is either activated or true
(represented as + in PRBAC), not activated or false (=) or don’t care (7). Note
that don’t care is not required but simplifies the specification of complex policies.

Policy Cases As shown in Listing 1.2 (see lines 10 and 11), the developer can
specify an arbitrary number of cases. Each case defines a logical combination
of policy terms for creating an access control predicate. There are five different
operations on the controlled objects. The developer can use ¢ to denote that users
with the appropriate roles (or satisfied attribute checks) are allowed to create an
instance of the controlled objects or a set of objects that are embedded within
the controlled objects. For example, if the controlled object is an entity, this
case controls the create operations of this entity throughout the application; if
the controlled object is a page, we look at the embedded objects within the
page, and see if there is any create operation related to them. The developer can
use r to allow read operations on the controlled object itself or its embedded
objects (i.e., properties as sub-elements). Similarly, to allow update or delete
operations on the controlled object itself or its embedded objects, u and d are
used. s (“secret”) can be used to hide the content of the object itself or its
embedded objects. For example, if the controlled object is User.username then
its instance will be hidden to the user, regardless of any other specified operations
(i.e., create, read, update, delete). Finally, i (“ignore”) can be used for defining
a policy that does not effect the predicates on the controlled objects.

Note that all of these operations are guarded by the defined access control
predicates. For example, Listing 1.2 line 10 shows that outside the office hours,
when the authorized user with the username faz has the role teacher but not
student or admin, then she cannot see any Person’s password.

Coverage Cases This part of the model (see lines 13-17 in Listing 1.2) helps
the developer to define a set of independent cross checks on the PRBAC model
and thus get assurance about the functional coverage of access control predicates
over the controlled objects. In particular, we allow the developer to specify for
each combination of policy terms to which extend the occurrences of an object
within the target application are controlled. This can be seen as a summary that
is independent of the actual access control mechanism. We allow the developer
to define the coverage cases by hand because only the developer knows about
the context of the target application, its security goals, and in what granularity
level both defined PRBAC and the target application need to be checked.

8 Seyed Hossein Ghotbi, Bernd Fischer

The developer defines a number of cases, which each check the relative cover-
age of a set of controlled objects and their related operations for a combination
of logical states (similar to Section 3.1). For example, in Listing 1.2 the first case
in line 16 states a user with the activated role admin must have read access to
all the controlled objects defined in the root page. In other words, all predicates
that are derived from the policy cases (see line 11 in Listing 1.2) and will be
woven around the objects within the root page, must be true for a user with
the role admin activated. If we for example assume that the controlled object
user.password is defined in the root page; then our first coverage case fails:
based on the second defined policy case, a user with the activated role admin
cannot see the instances of user.password. The coverage cases help the devel-
oper to check the defined PZRBAC model, based on a different view, with respect
to the target application. For example, in Listing 1.2, the policy cases do not
directly cover the controlled object student .marks. However, in the second cov-
erage case, we check its coverage range based on a case where the user has an
activated role teacher.

3.2 Code Generation from #RBAC Models

The PRBAC code generation process is divided into a testing and a transforma-
tion phase (see Figure 1). The aim of the testing phase is to validate and verify
the access control model itself and its integration into the target application. As
the PRBAC model is defined separately from the application code, the aim of
the transformation phase is to first generate the access control elements (e.g.,
data model, access control predicates, etc.) and then to weave them into the
target application code.

| (DRIBAIC H Application |
Ve“gﬂon ”” Valgion "” ®

Coverage

Testing phase

Model is correct and complete and
application code is valid based on the defined model

Generates access predicates |]|]|:> .
& other related RBAC elements Weaving

g
é (e.g., data model)

“Transformation

Update Application's AST

Application + Woven access control predicates and other RBAC
related elements (e.g., data model, role management system, etc.)

WebDSL's compiler continues as usual

Fig. 1. An overview of the PRBAC generation pipeline

Fine-Grained Role- and Attribute-Based Access Control 9

Testing Phase A number of studies [23, 20, 21] highlight the fact that develop-
ing an access control mechanism is error-prone and the result therefore needs to
be tested. Unlike the prior approaches, we emphasize the fact that correctness
and completeness of the access control model on its own is not enough and the
target application must be considered as well, based on the defined access control
model. The access control predicates are derived from the access control model
and need to be implemented (in our case generated) and inserted around the
desired objects. Even a partial failure of doing so will result in application code
that is compilable but has a number of security holes that need to be handled
after the application deployment phase. This leads to high testing and main-
tenance costs after the deployment of the application. It is ideal to give a full
guarantee to the developer for the defined access control model and its target
Web application before deployment phase. The testing phase consists of three
consecutive white-box testing steps (see Figure 1). Failure of each step will ter-
minate the rest of the compilation and its related error messages will be given.
In the first step, the defined PRBAC model is verified using model checking.
Second, the application code is validated with respect to the defined PRBAC
model. Third, the coverage is checked against the defined objectives.

Model Verification This step mechanically verifies the correctness and com-
pleteness of an PRBAC model using SMT solver, Z3 [7]. Here, we first verify
the correctness of the defined basic RBAC elements and of each individual case
defined in the policy and coverage cases with respect to the defined attributes.
Second, we check the completeness of the policy and coverage cases. Since Z3
takes a representation of the model in first-order logic (FOL) and decides its
satisfiability, our verification approach is to generate a number of FOL formulas
from the given PRBAC model, and let Z3 check them individually. We then
mechanically analyze Z3’s output results to come to a conclusion about the cor-
rectness and completeness of the original model.

The basic RBAC elements can already create conflicts in the model. For
instance, if a role supervisor inherits from a role teacher but there is also a
(dynamic or static) SOD relation between them, then this specification creates
a conflict and consequently an error in the model, because these two roles must
be activated (due to the inheritance relation) and deactivated (due to the SOD)
at the same time. To check the correctness of the basic RBAC elements, we first
mechanically check if there are any undefined roles in inheritence, SSOD, and
DSOD relations. Second, we check for possible conflicts between the hierarchy
and SSOD (respectively DSOD) constraints by generating two FOL formulas to
check with Z3. If the result is unsatisfiable (UNSAT), then there is an error in
the defined basic RBAC structure. However if all the results are satisfiable (SAT)
then the structure of basic RBAC elements is correct and we consequently go
to the next step to check the correctness and completeness of the individually
defined policy and coverage cases.

The defined cases can cause three types of errors that need to be checked:

— Incorrect case: The policy terms and the policy signs specified in each case
can be inconsistent with the other RBAC elements. For example, if there is

10 Seyed Hossein Ghotbi, Bernd Fischer

a SSOD relation between the teacher and student roles, a case should not
define a predicate in which both roles are active (i.e., have a “+” as policy
sign), because the case can then never apply. is an error in the model if each
has + for their policy sign. Similarly, we have an inconsistency if there is an
inheritance relation between a parent and a child role, and a case states the
parent role is not active but the child role is active.

— QOwerlap: If two cases overlap, then the respective access control predicatas
can be true at the same time; if the specified access rights are then different,
the model is inconsistent. An overlap between two cases can be detected by
comparing the corresponding pairs of policy signs: if the signs for at least
one policy term are complementary (i.e., one is active (“4”) while the other
is not (“-”)), then there can be no overlap.

— Incompleteness: If the defined policy or coverage cases do not fully cover all
the possible cases, then we have incompleteness.

The correctness of each case is checked in two steps. First, we need to
check the defined Time and Date attributes and their intervals (if any). For
example, we have an error, if the policy terms Sys.Time (>=7:00,<=9:00) and
Sys.Time (>=6:00,<=6:30) are both activated in a single case, because this pol-
icy can never be true (i.e., the time can not be between 6 and 6:30am and
between 7 to 9 am at the same time). Such error are checked during compile
time by a set of custom Stratego strategies. In the second step we check the
basic RBAC elements by generating a FOL formula from these elements, using
the truth values corresponding to the policy signs for each policy term. Then,
73 is called to check the satisfiability of the formula; a SAT result means that
we have a correct case, and UNSAT means that we have an error. For example,
to check the correctness of the RBAC elements defined in Listing 1.2 Line 11,
in addition to the defined RBAC structure (Listing 1.2 lines 2-5), we derive a
FOL formula that states admin must be true and teacher and student must
both be false. In this case, Z3 gives us a SAT result, which means that there is
no conflict in the defined RBAC model.

For overlap checks, we pair any two cases and generate a FOL formula in
which there is a conjunction between these two cases and their sub-elements.
Then we check each pair for satisfiability; (UN)SAT means that the two cases
are (not) overlapping. Then, the overlapping check is repeated until all com-
binations are covered. For example for a policy set {teacher, student}, if we
have two cases (+,-) and (+,7), then their FOL formula will be (teacher &&
not student) && (teacher), in which the SMT solver will give a SAT mes-
sage that results in an error message because these two cases are overlapping.
In case of incompleteness checks, we disjunctively link the negation of all of the
cases and conjunction with the policy signs of each negated case. We then call Z3
to check the model for satisfiability. If the result is SAT, then there is a missing
case and Z3 gives a counterexample for it. Since this produces the missing cases
one-by-one, we need to respectively update and re-check the model, until Z3
finds no more missing cases. All steps mentioned above happen during compile-
time. Since the developer does not know about Z3 and its results, we need to

Fine-Grained Role- and Attribute-Based Access Control 11

interpret these results for the user in terms of the PRBAC elements. During the
last step, we parse the model checking results (UNSAT, SAT) and by retrieving
its representation elements in the abstract syntax tree (AST) we give the error
during the compilation based on the PZRBAC elements.

Web Application Validation In our approach, the access control predicates
are woven into the application code around the controlled objects. The controlled
objects and consequently their predicates may be nested within each other and
can so create a set of conflicts. For example, in Listing 3, we have two different
controlled objects, in which the instances of all users’ username are embedded
within the sub-element of the page UserList. We have P1 that protects UserList
and P2 that protects the instances of users’ username. Moreover, P1 indirectly
protects P2 as P2 is nested within P1. Let us assume that P1 and P2 can conflict,
e.g., P1 is true for users with the role teacher activated and P2 is true for users
with the role admin activated but in the access control model there is also an
SSOD relation between role teacher and admin. It is clear that users with the
role admin activated can never access the instances of users’ username, even
though they have a right to do so. We call these situations dead authorization
code and the following steps are used for finding such situations.

Listing 1.3. Nested controlled objects and their related predicates may create
a set of conflicts.

1 if (P1){ group(” UserList”) {

2 if (P2){ for(u: User){

3 output(u.username) //could be unreachable
4 1}

5}

— Sorting and Pairing: First, we sort all policy cases based on the controlled
objects, their related operations and predicates. Then, for each possible pair
of objects, we create a list that is the union of all related predicates for that
pair.

— Potential Conflicts: We check for conflicts between the predicates of each
pair with respect to the defined RBAC structure. For this reason, for each
pair, we transform their predicates and the defined RBAC structure into a
FOL formula and check its satisfiability by using Z3; in case of UNSAT, we
have a conflict.

— Conflict Detection: Now, we have a list of pairs in which the predicates create
a conflict. We finally check whether the paired objects are embedded within
each other in the application, and if so, we have found an error.

Coverage The aim of this step is to check the required access control cover-
age based on the defined policy and coverage cases, and to provide feedback to
the developer about the potential shortcomings of the defined #PRBAC model.
A coverage percentage shows what percentage of an object’s occurrences in the
application is protected directly or indirectly by the derived access control pred-
icates that are defined in the policy cases. For each controlled object used in the
coverage cases, the coverage percentage is calculated. The following three steps
sketch the calculation of the coverage percentage for each controlled object:

12 Seyed Hossein Ghotbi, Bernd Fischer

— Sorting and pairing: We sort both coverage and policy cases into two lists.
We then combine each coverage case with all the policy cases.

— Finding related cases and partial coverage: We then need to find all the
related policy cases for each coverage case based on the access control predi-
cate. For this, we transform each pair of cases into a FOL formula such that
the policy case’s predicate is used as it is but we transform the negation of
the coverage predicates. Then we call Z3 to check the satisfiability of the
formula. If it is SAT, we omit the paired cases from the coverage computa-
tion, as they are not related; however in case of UNSAT, the predicates are
related and we use the corresponding object and operation to calculate the
coverage of the object based on that particular related predicate.

— Qwerall coverage: We continually repeat the last step to find out all the direct
and indirect coverage of each (object,operation) pair based on the defined
policy cases. Then, we divide the total value of the computed coverage by the
total number of the occurrences for the object throughout the application.

If the computed coverage is outside the specified range we give an error that
describes the PRBAC elements that fail the coverage check, and terminate the
compilation. The developer can then fix the coverage errors based on the defined
PRBAC model and/or the target application.

Transformation Phase As Figure 1 shows, the transformation phase is di-
vided into generating the required elements and then weaving them throughout
the Web application code. These elements are related to the RBAC and access
control predicates of the system that are defined in the ZRBAC model.

RBAC Generation First, elements generated from the #RBAC model have
to be added to the Web application’s data model, in order to provide the data
manipulation mechanisms for roles and their associated activities, such as main-
taining list of assigned roles for each user. Second, these generated elements
have to provide a role management mechanism for the authenticated users of
the application. This mechanism consists of the role assignment and activation
modules that are based on the overall RBAC structure defined within @RBAC
model.

To extend the Web application’s data model, we need to find the entity that
represents the users of the system. In WebDSL, the developer uses the notion of
principal to define the users’ authentication credentials. For example, in Listing
1.4, the authentication is based on the username and password properties of the
Person entity which represents the user of the system. We also use this entity
type to represent that users have a given role (Listing 1.5, line 4) and extend it
to store a set of assigned roles for each user (line 12). In addition, the session
element must be extended to hold the activated roles for each user. In this we
extend the data model of the application by generating the role entity (lines 2-9),
extending the Person entity (lines 10-13); and extending the Web application
session (lines 15-17).

Fine-Grained Role- and Attribute-Based Access Control 13

Listing 1.4. WebDSL authentication credentials

principal is Person with credentials username, password

Listing 1.5. Generated data model elements

1 //Generated Role entity
2 entity Role {

3 name :: String (name)

4 users —> Set<Person>

5 inheritency —> Set<Role> (optional)

6 ssod —> Set<Role> (optional)

7 dsod —> Set<Role> (optional)

8 cardinality —> Int

9 }

10 //Extending ’'Person’ entity for role assignment
11 extend entity Person{

12 assignedRoles —> Set<Role> (inverse=Role. users)
13

14 //Extending session for activated roles
15 extend session securityContext{

16 activatedRoles —> Set<Role>

17 }

We already checked the correctness of the RBAC structure defined within the
PRBAC model (see 3.2) and as shown in the generated role entity, we store each
role’s characteristics (e.g., SSOD) for the RBAC management component. The
SSOD relations between the roles is used in the role assignment component which
during the run-time of the system must not allow the administrator to assign
conflicted roles to any users of the system. The DSOD relation between roles is
used in the role activation module of the system, to ensure that two roles in the
DSOD relation cannot be activated in any user’s session. The inheritance relation
between roles is used for both role assignment and role activation modules. These
relations must be considered for the overall structure of the defined RBAC; in
particular, we need to consider more than the directly defined relations for each
role. For example, if a role advisor inherits from the role teacher, and teacher
has an SSOD relation to manager, the roles advisor and manager can never be
assigned to one user, even if the defined model did not explicitly state any SSOD
relation between advisor and manager. In order to get all direct and indirect
relations of each role, we translate the RBAC structure into a FOL formula,
where we give a true value to the role whose relations, we want to check and
use the SMT solver to get a counterexample in which the related roles are either
true (due to inheritance relation) or false (due to SSOD or DSOD).

Predicate Generation At this stage, we know that all specified cases are non-
overlapping and correct. Each case then represents a predicate that is used to
protect the controlled objects and their related operations. Before starting to
generate the access control predicates, we first sort the cases based on controlled
objects and operations, by joining their predicates where there is a same opera-
tion on the controlled object. For example, in Listing 1.2, for the controlled object
Person.password both defined cases result in a secret operation. Therefore,
the access control predicate that protects the instances of Person.password
is equal to: (teacher && not student && not admin) || (not teacher &&
not student && admin). These sorted cases will be parsed into an AST which

14 Seyed Hossein Ghotbi, Bernd Fischer

is used by the predicate generator to generate a set of predicates that can be
woven around the controlled objects in the Web application’s AST.

Weaving stage Weaving is the last step in the PRBAC transformation phase.
In this step, we first get the result of the RBAC and predicate generators. For
the RBAC generator, the result is an AST that represents a number of modules
that hold the generated data model and RBAC management component of the
system. We weave these modules into the Web application’s AST and we add a
navigator to the authentication code to redirect the user to the role management
component after successful authentication. Any user has access to their role ac-
tivation component, however the role assignment component is protected, based
on the access rights that are defined in #RBAC model (as shown in Listing 1.2).
We then repeatedly traverse the Web application’s AST, and iteratively weave in
the generated access control predicates around any occurences of the controlled
objects. In terms of predicates, the generated AST holds all the predicates sorted
based on operations on the controlled objects. We finally pass the updated AST
to the next step within the WebDSL compiler.

4 Case Study

The aim of this section is to show the benefits and limitations of the PRBAC
modeling language and its code generation mechanism, based on the evaluation
of a case study. The main objective of the evaluation is to check the efficacy of
®RBAC during the development phase of a target application with a reasonably
large data model, based on a rich set of policies. We chose a departmental Web
site as a target application. Moreover, the goal of the evaluation is to derive a set
of findings that can be used to improve any RBAC-based access control model,
including #RBAC, that is intended to be used in the Web application domain.

We implemented our case study using WebDSL for the Web elements and
®RBAC for the access control elements of the application. This case study is
created and deployed for a language research group to cover their internal (e.g.,
organization of vivas) and external (e.g., publications) needs and to provide a
fine-grained access control over the objects.

4.1 Web Application Description

In this case study, the Web application consists of three main elements, data
model, pages, and access control. We divided the data model elements into two
categories; users and activities. Users’ entities belong to different types of users in
the system such as academics or visitors. The second set of entities are related to
the available activities such as adding an interest. The access control data model
is generated at compile time. The size of the data model is quit large. We have
nine different entities for the different types of users (e.g., academic, student)
and 13 entities that cover the objects involved in activities (e.g., publications).
Overall, we have 189 properties that are associated with 22 entities. These are
the fine-grained objects that are used throughout the application code for a

Fine-Grained Role- and Attribute-Based Access Control 15

number of times. We divided the pages based on the different types of users and
activities, regardless of the operations used for the system objects. Hence, there
is only one page for each type of data and in that page all the available operations
exist, but each part of the page will be access-controlled based on the policies
defined in the PRBAC model. The access control elements for this case study
are derived from the needs of the different types of users in a research group.
For example, an academic can be a supervisor of a PhD student; however, she
cannot be an examiner of a PhD student who she is supervising.

4.2 Evaluation and Findings

To evaluate the PRBAC model and mechanism, we looked at three aspects: mod-
eling, testing, and transformation phases. The errors in the model were divided
into attribute, RBAC, and the application errors, respectively. These errors were
discovered before the transformation phase and consequently application deploy-
ment. The transformation strategies that were used in testing and transformation
phase were tested, in a white-box manner, during their development. The woven
AST was inspected manually to make sure all objects were correctly covered by
the corresponding access control predicates, and conversely, that no unguarded
objects were accidently covered directly or indirectly by any predicates.

The benefits are divided into development efficiency on one side, and correct-
ness and completeness of the model and target application, respectively, before
its deployment on the other side. During our case study, the PRBAC model
was developed separately from the application code. So, in case of errors the
developer did not need to search through the access control definitions scattered
through the application code. Moreover, the PRBAC is developed at the right
abstraction level: the developer did not need to use any specific object or agent-
oriented terminology to define the access control components and just used the
access control concepts such as roles, as they are . PRBAC is also a cost effec-
tive solution. In our case study the compilation time of our access control model
was just 4.5 seconds on a machine with 4GB RAM and 2.3GHz CPU, to cover
instances of 189 unique objects throughout the application. The correctness and
completeness checks on the PRBAC model give an insurance to the developer
about the access control of the system, so any security failure of the system
during its run-time is not related to its access control element but to the other
security elements of the system such as data encryption.

PRBAC’s weakness originat in the RBAC approach itself; in particular,
RBAC does not support an ownership notion. For instance, if in a research group
we have a policy that states that the supervisor can edit their students’ travel
allowance, then any user with the role supervisor can edit the travel allowance
of any student in the group regardless of who is the supervisor of those students.
In order to overcome this flaw, the developer needs to introduce a number of
unnecessary roles such as supervisor0fStudentA to enforce the mentioned pol-
icy. So PRBAC would be more efficient if the developer could use the ownership
notion as a policy term.

16 Seyed Hossein Ghotbi, Bernd Fischer
5 Conclusion and Future Work

This paper introduced PRBAC, a declarative and fine-grained role- and attribute-
based access control model for the Web application domain that enforces sepa-
ration of concerns between application and access control model at the right
abstraction level. PRBAC is defined and implemented as an extension to a
domain-specific language, WebDSL, and its compiler. Its architecture is divided
into a testing phase and a subsequent transformation phase. The testing phase
uses a fast mechanism to check the correctness and completeness of the model
and the application via code transformation and model-checking techniques. We
showed how dead authorization code could occur in a fine-grained access control
model, and how we check for this before the generation phase. We evaluated
the approach and its mechanism based on an application example. The exam-
ple demonstrated the efficacy and benefits of PRBAC in terms of defining a
fine-grained access control model and checking correctness, completeness and
sufficiency. Furthermore, it showed the applicability of PRBAC model for large
data models based on a rich set of policies.

For future work we like to introduce the notion of ownership [22], as a pol-
icy term, to improve the PRBAC model and its mechanism. Also, we plan to
integrate other well-known access control models, to achieve access control inte-
gration for Web applications that are constructed from mixed sources and require
different access control models for different parts of the application. Moreover, in
terms of the PRBAC architecture, we like to explore the possibility of generating
our access control predicates on top of the database tier so that the application
can retrieve access control settings from the database at run-time and take ad-
vantage of the database tier’s security options. Furthermore, we will introduce
authorization management systems for defined access control models within an
application.

References

[1] Abi Haidar, D., Cuppens-Boulahia, N., Cuppens, F., and Debar, H. (2006). An
extended RBAC profile of XACML. SWS’06, pp. 13-22, ACM.

[2] Bertino, E., Bonatti, P., and Ferrar E. (2001). TRBAC: A temporal role-based
access control model. ACM Trans. Inf. Syst. Secur.’01, pp. 191-233.

[3] Chen, K. and Huang, C.-M. (2005). A practical aspect framework for enforcing
fine-grained access control in web applications. ISPEC’05, LNCS 3439, pp. 156—
167.

[4] Connor, A. and Loomis, R. (2010). Economic analysis of role-based access control.
Technical report, National Institute of Standards and Technology.

[5] Dalai, A. K. and Jena, S. K. (2011). Evaluation of web application security risks
and secure design patterns. CCS’11, pp. 565-568, ACM.

[6] Damianou, N., Dulay, N., Lupu, E., and Sloman, M. (2001). The Ponder policy
specification language. POLICY’01, LNCS 1995, pp. 18-38.

[7] de Moura, L. M. and Bjgrner, N. (2008). Z3: An Efficient SMT Solver. TACAS 08,
LNCS 5195, pp. 337-340.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
18]

[19]
20]

21]

22]

23]

24]

[25]

[26]

27]

Fine-Grained Role- and Attribute-Based Access Control 17

Ferraiolo, D. and Kuhn, R. (1992). Role-Based Access Control. NIST-NCSC’92,
pp- 554-563.

Ferraiolo, D. F., Barkley, J. F., and Kuhn, D. R. (1999). A role-based access
control model and reference implementation within a corporate intranet. 155°09,
pp. 34-64, ACM.

Giuri, L., and Iglio, P. (1997). Role templates for content-based access control.
Workshop RBAC’97, pp. 153-159.

Gorodetski, V. I., Skormin, V. A., and Popyack, L. J., editors (2001). Informa-
tion Assurance in Computer Networks: Methods, Models, and Architectures for
Network Security, LNCS 2052.

Groenewegen, D. and Visser, E. (2009). Integration of data validation and user
interface concerns in a DSL for web applications. SLE’09, LNCS 5969, pp. 164-
173.

Groenewegen, D. M., Hemel, Z., Kats, L. C. L., and Visser, E. (2008). WebDSL:
A domain-specific language for dynamic web applications. OOPSLA’08, pp. 779—
780. ACM.

Groenewegen, D. M. and Visser, E. (2008). Declarative access control for
WebDSL: Combining language integration and separation of concerns. I[CWE’08,
pp. 175-188. IEEE.

Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J. (1989). The syntax
definition formalism SDF - reference manual. SIGPLAN Notices, 24(11):43-75.
Hemel, Z., Kats, L. C. L., Groenewegen, D. M., and Visser, E. (2010). Code
generation by model transformation: a case study in transformation modularity.
Software and System Modeling, 9(3):375-402.

Hortsmann, C. (2012). Scala for the Impatient. Addison-Wesley Professional.
Hsieh, G., Foster, K., Emamali, G., Patrick, G., and Marvel, L. M. (2009). Using
XACML for embedded and fine-grained access control policy. ARES’09, pp. 462—
468. TEEE.

Jin, X., Krishnan, R., and Sandhu R. (2012). A Unified Attribute-Based Access
Control Model Covering DAC, MAC and RBAC. DBSec’12, pp. 41-55.

Martin, E., Xie, T., and Yu, T. (2006). Defining and measuring policy coverage
in testing access control policies. ICICS’06, LNCS 4307, pp. 139-158,

Masood, A., Bhatti, R., Ghafoor, A., and Mathur, A. P. (2009). Scalable and
effective test generation for role-based access control systems. Software Eng.,
35(5):654-668, IEEE.

McCollum, C., Messing, J., and Notargiacomo, L. (1990). Beyond the Pale of
MAC and DAC Defining new forms of access control. RSP’90, pp. 190 —200,
IEEE.

Montrieux, L., Wermelinger, M., and Yu, Y. (2011). Tool support for UML-based
specification and verification of role-based access control properties. ESEC’11,
pp. 456-459. ACM.

Samarati, P. and di Vimercati, S. D. C. (2000). Access control: Policies, models,
and mechanisms. FSAD’01, LNCS 2171, pp. 137-196.

Sandhu, R., Ferraiolo, D., and Kuhn, R. (2000). The NIST Model for Role-Based
Access Control: Towards a Unified Standard. Workshop on RBAC 00, pp. 4763,
ACM.

Steele, R. and Min, K. (2010). Healthpass: Fine-grained access control to portable
personal health records. AINA’10, pp. 1012-1019, IEEE.

Sujansky, W. V., Faus, S. A., Stone, E., and Brennan, P. F. (2010). A method
to implement fine-grained access control for personal health records through

18

28]

[29]

30]

31]

32]

33]

Seyed Hossein Ghotbi, Bernd Fischer

standard relational database queries. Journal of Biomedical Informatics 5-
Supplement-1, pp. S46—-S50.

Tondel, I., Jaatun, M., and Jensen, J. (2008). Learning from software security
testing. ICSTW’08, pp. 286 —294. IEEE.

Visser, E. (2003). Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in Stratego/XT 0.9. Domain-Specific Program Generation,
LNCS 3016, pp. 216-238.

Visser, E. (2007). WebDSL: A case study in domain-specific language engineering,.
GTTSE’07, LNCS 5235, pp. 291-373.

Win, B. D., Piessens, F., Joosen, W., De, B., Frank, W., Joosen, P. W.; and Ver-
hanneman, T. (2002). On the importance of the separation-of-concerns principle
in secure software engineering. Workshop AEPSSD’02.

Wurster, G. and Van Oorschot, P. C. (2009). The developer is the enemy. NSP’08,
pp. 89-97, ACM.

Zhu, H. and Lu, K. (2007). Fine-grained access control for database management
systems. BNCOD’07, LNCS 4587, pp. 215-223.

