
Softw Syst Model (2015) 14:65–81
DOI 10.1007/s10270-013-0366-0

SPECIAL SECTION PAPER

Model checking LTL properties over ANSI-C programs
with bounded traces

Jeremy Morse · Lucas Cordeiro · Denis Nicole ·
Bernd Fischer

Received: 5 April 2012 / Revised: 1 July 2013 / Accepted: 4 July 2013 / Published online: 28 July 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Context-bounded model checking has been used
successfully to verify safety properties in multi-threaded sys-
tems automatically, even if they are implemented in low-level
programming languages such as C. In this paper, we describe
and experiment with an approach to extend context-bounded
software model checking to safety and liveness properties
expressed in linear-time temporal logic (LTL). Our approach
checks the actual C program, rather than an extracted abstract
model. It converts the LTL formulas into Büchi automata for
the corresponding never claims and then further into C mon-
itor threads that are interleaved with the execution of the pro-
gram under analysis. This combined system is then checked
using the ESBMC model checker. We use an extended, four-
valued LTL semantics to handle the finite traces that bounded
model checking explores; we thus check the combined sys-
tem several times with different acceptance criteria to derive
the correct truth value. In order to mitigate the state space

Communicated by Dr. Gerardo Schneider, Gilles Barthe, and Alberto
Pardo.

J. Morse (B) · D. Nicole · B. Fischer
Electronics and Computer Science, University of Southampton,
Southampton, UK
e-mail: jcmm106@ecs.soton.ac.uk

D. Nicole
e-mail: dan@ecs.soton.ac.uk

B. Fischer
e-mail: b.fischer@ecs.soton.ac.uk

L. Cordeiro
Electronic and Information Research Center, Federal University
of Amazonas, Manaus, Brazil
e-mail: lucascordeiro@ufam.edu.br

B. Fischer
Division of Computer Science, Stellenbosch University,
Stellenbosch, South Africa

explosion, we use a dedicated scheduler that selects the mon-
itor thread only after updates to global variables occurring in
the LTL formula. We demonstrate our approach on the analy-
sis of the sequential firmware of a medical device and a small
multi-threaded control application.

Keywords Model checking · Linear temporal logic ·
Software verification

1 Introduction

Model checking has been used successfully to verify actual
software (as opposed to abstract system designs) [3,9,11,12,
46], including multi-threaded applications written in low-
level languages such as C [15,31,40]. In context-bounded
model checking, the state spaces of such applications are
bounded by limiting the size of the program’s data struc-
tures (e.g., arrays) as well as the number of loop iterations
and context switches between the different threads that are
explored by the model checker. This approach is typically
used for the verification of safety properties expressed as
assertions in the code, but it can also be used to verify some
limited liveness properties such as the absence of global or
local deadlocks [15].

Many important requirements on the software behavior
can, however, be expressed more naturally as liveness prop-
erties in a temporal logic [18], for example “whenever the
start button is pressed, the charge eventually exceeds a mini-
mum level.” Such requirements are difficult to check directly
as safety properties even on finite program executions; it has
typically been necessary to add additional executable code to
the program under analysis to retain the past state informa-
tion. This amounts to the ad hoc introduction of a hand-coded
state machine capturing (past-time) temporal formulas.

123

66 J. Morse et al.

Here, we instead use context-bounded model checking to
validate multi-threaded C programs directly against (future
time) temporal formulas over expressions in the global vari-
ables of the C program under test. Thus, continuing the previ-
ous example, if the C variables pressed, charge, and
min represent the state of the button, and the current and
minimum charge levels, respectively, then we can capture
the requirement with the LTL formula G({pressed} →
F {charge > min}).1 In principle, we follow the usual
approach [13,24] to check these formulas; we convert the
negated LTL formula (the so-called never claim [23]) into a
Büchi automaton (BA), which is composed with the program
under analysis. If the composed system admits an accept-
ing run, the program violates the specified requirement. Our
approach differs, however, in two key aspects. First, we check
the actual C program, rather than an extracted and abstracted
model. We thus convert the LTL formula’s BA further into
a separate C monitor thread and check the interleavings
between this monitor and the program using ESBMC [15],
our context-bounded model checker for C. Second, we extend
the truth values of the LTL expressions to a four-valued lattice
describing the least truth values over various possible future
behaviors of a C program with possibly infinite state space.
In particular, we consider the explored traces to be finite pre-
fixes of infinite traces and our four-valued logic describes
the accepting behavior of the BA for different infinite exten-
sions of the explored finite traces. In practice, the resulting
never claim BA obtained from commonly used specifications
is rather small. The small size allows us to analyze which
states are accepting under the different infinite extensions of
the finite traces. We then check the combined system several
times, with different assertions corresponding to the differ-
ent acceptance criteria, to derive the correct truth value for
the LTL formula. The program’s overall “correctness” value
in the lattice is the weakest truth value for which the model
checker can find a witness that violates the corresponding
assertion. This gives us a method to analyze both safety and
liveness within the framework of bounded software model
checking.

Our approach avoids the inherent imprecision from
abstracting the C program into a BA, but the monitor has
to capture transient behavior internal to the program under
analysis. The monitor and the program communicate via aux-
iliary variables reporting the truth values of the LTL for-
mula’s inner subexpression. Our tool automatically inserts
these variables on the fly, maintains them, and also uses them
to guide ESBMC’s thread exploration. In order to support this
addition efficiently, we have extended ESBMC’s scheduler
so that the monitor thread is scheduled only after updates to
global variables.

1 Here and throughout the paper we enclose the embedded C expres-
sions in curly brackets and typeset them in typewriter font.

Our paper makes two main contributions, one theoretical
and one practical. On the theoretical side, it describes tech-
niques that allow a bounded model checker to give mean-
ingful information about liveness properties of potentially
non-terminating programs. On the practical side, it describes
the first mechanism, to the best of our knowledge, to verify
LTL properties against an unmodified C code base, which
can include multi-threaded code using the standard pthreads
library [26].

Organization This article is a substantially revised and
extended version of our SEFM 2011 contribution [37]. The
major differences are that (i) we now use a four-valued LTL
semantics to make judgements based on the finite traces that
bounded model checking explores and check the system sev-
eral times with different BA acceptance criteria to derive the
correct truth value; (ii) we now handle multi-threaded code;
(iii) we implemented a dedicated scheduler that speeds up
the analysis dramatically; and (iv) we extended our eval-
uation with new examples. The remainder of the paper is
organized as follows: in the next two sections, we give the
necessary background, first on the ESBMC context-bounded
model checker (Sect. 2) and then on LTL (Sect. 3). In Sect. 4,
we then describe our approach to characterizing the runs of
a BA according to our four-valued semantics. In Sect. 5, we
demonstrate by examples how this approach can be used to
handle different classes of LTL properties. We then describe
in more detail the implementation (Sect. 6) and two case
studies (Sect. 7), before we finally discuss related work and
conclude.

2 Bounded model checking with ESBMC

ESBMC is a context-bounded symbolic model checker for C
software, which allows the verification of single- and multi-
threaded programs with shared variables and locks [15,17].
ESBMC can verify programs that make use of bit opera-
tions, arrays, pointers, structs, unions, memory allocation,
and some floating-point arithmetic. It can reason about arith-
metic under- and overflows, pointer safety, memory leaks,
array bounds violations, atomicity and order violations, local
and global deadlocks, data races, and user-defined assertions.
The latter can be specified at arbitrary program locations
using the usual C assert-statements.

In ESBMC, the program to be analyzed is modelled as a
state transition system M = (S, R, S0), which is extracted
from the control-flow graph (CFG). S represents the set of
states, R ⊆ S × S represents the set of transitions (i.e., pairs
of states specifying how the system can move from state to
state), and S0 ⊆ S represents the set of initial states. A state
s ∈ S consists of the value of the program counters of all
threads and the values of all program variables. An initial
state s0 assigns the initial program location of the CFG to the

123

Model checking LTL properties with bounded traces 67

program counter of the main thread. We identify each transi-
tion γ = (si , si+1) ∈ R between two states si and si+1 with
a logical formula γ (si , si+1) that captures the constraints on
the corresponding values of the program counters and the
program variables.

Given the transition system M, a proposition φ, a context
switch bound C , and a bound k, ESBMC builds a reachability
tree (RT) that represents the program unfolding for C , k, and
φ. It then derives a verification condition ψπk for each given
interleaving of statements (or computation path) π such that
ψπk is satisfiable if and only if φ has a counterexample of
depth less than or equal to k that is exhibited by π . ψπk is
given by the following logical formula:

ψπk = I (s0) ∧
k∨

i=0

i−1∧

j=0

γ (s j , s j+1) ∧ ¬φ(si) (1)

Here, I characterizes the set of initial states of M and
γ (s j , s j+1) is the transition relation of M between steps j
and j + 1, as above. Hence, I (s0) ∧ ∧i−1

j=0 γ (s j , s j+1) rep-
resents the executions of M of length i and ψπk can be sat-
isfied if and only if for some i ≤ k, there exists a reachable
state along π at time step i in which φ is violated. ψπk is
a quantifier-free formula in a decidable subset of first-order
logic, which is checked for satisfiability by an SMT solver.
If ψπk is satisfiable, then φ is violated along π and the SMT
solver provides a satisfying assignment, from which we can
extract the values of the program variables to construct a
counterexample or witness. A counterexample for a property
φ is a sequence of states s0, s1, . . . , sk with s0 ∈ S0, si+1 ∈ S,
and γ (si , si+1) for 0 ≤ i < k. If ψπk is unsatisfiable, we can
conclude that no error state is reachable in k steps or less
along π . Finally, we can define ψk = ∨

π ψ
π
k and use this to

check all paths. However, ESBMC combines symbolic model
checking with explicit state space exploration; in particular,
it explicitly explores the possible interleavings (up to the
given context bound) while it treats each interleaving itself
symbolically. ESBMC implements several variations of this
approach, which differ in the way they exploit the RT. The
most effective variation simply traverses the RT depth first
and calls the single-threaded BMC procedure on the inter-
leaving whenever it reaches an RT leaf node. It stops when
it finds a bug or has systematically explored all possible RT
interleavings.

3 LTL over infinite and finite traces

3.1 Linear-time temporal logic

LTL is a specification logic commonly used in model check-
ing [10,25,28], which extends propositional logic by includ-
ing temporal operators.

Definition 1 LTL formulas are defined over primitive propo-
sitions, logical operators, and temporal operators as follows:

ϕ,ψ ::= true | false | p | ¬ϕ | ϕ ∨ ψ
|Xϕ | Fϕ | Gϕ | ϕ Uψ | ϕ Rψ

Here, p is a C expression over the global variables of the
program under analysis; p must not have side effects. In
ESBMC’s LTL notation, these expressions must be enclosed
in curly brackets and are treated as truth values according to
C semantics. We define the remaining logical operators in the
usual way. We use the mathematical notation for LTL formu-
las and C style notation inside the embedded C expressions.
The temporal operators are “in the next state” or next (X),
“in some future state” or eventually (F), “in all future states”
or globally (G), until (U), and release (R). ϕ Uψ means that
ϕ must hold continuously until ψ holds; ψ must eventually
become true. ϕ Rψ means that ψ must hold now and con-
tinue to hold either until ϕ becomes true as well, or forever (if
ϕ never becomes true). All temporal operators can be defined
in terms of X and U [36], but we use the full set of operators
here.

In the standard semantics [39], LTL formulas are inter-
preted over traces over a given alphabet Σ of symbols, i.e.,
possibly infinite words a0a1 . . ., with ai ∈ Σ . In LTL model
checking, it is common to consider a non-empty set of atomic
or primitive propositions Prop and to define Σ = 2Prop.
Each symbol a ∈ Σ denotes a valuation, the set of Boolean
expressions over the global variables of the C program that
hold at a given time; it can be seen as a possible world
in a Kripke structure. We use u ∈ Σ∗ to denote finite
traces, w ∈ Σω to denote infinite traces, and ε to denote
the empty trace. We further use wi = wiwi+1 . . . to denote
the suffix of an infinite trace; for a finite trace of length n,
ui = ui ui+1 . . . un−1 if i < n and ε otherwise. We finally
use the notation aω to denote the infinite trace consisting of
the letter a ∈ Σ only.

We follow the exposition by Bauer et al. [6] and use finite
deMorgan lattices as truth domains. A deMorgan lattice is a
distributive lattice (L,	,
,�,⊥) where every element x ∈
L has a dual element x ∈ L such that x = x and x y
implies y x ; here, is the partial order induced by the
lattice structure. Note that not every deMorgan lattice is a
Boolean lattice, because duals are not proper complements
(i.e., x
 x = ⊥ is not necessarily true), but the converse
holds, and in particular the Boolean lattice over the standard
two-valued truth domain B2 = {⊥,�} is a deMorgan lattice
with ⊥ �.

We can then define the standard semantics of LTL formu-
las via the interpretation function [_ |� _]ω : Σω×LT L →
B2, as shown in Fig. 1 [6]. We call w ∈ Σω a model of ϕ
iff [w |� ϕ]ω = � and also say that w satisfies ϕ or that ϕ
holds for w. For each LTL formula, the set of all its models

123

68 J. Morse et al.

Fig. 1 Standard LTL semantics
over infinite traces

is an ω-regular language that is accepted by a corresponding
Büchi automaton [44,45].

We interpret a possibly multi-threaded C program P as
a Kripke structure whose state transitions are derived from
the possibly interleaved execution sequence of C statements
and whose valuations are given by the possible values of
the program’s global variables; in the current configuration,
we consider interleavings only at statement boundaries and
assume sequential consistency [32], but options to ESBMC
allow us also to use a finer-grained analysis. P can be non-
deterministic, so the transition relation can branch even for
single-threaded programs. As C’s semantics gives a defined
(zero) value to all global variables not initialized explicitly
at their declaration, all valuations are completely defined in
each possible world, including the initial world. This also
gives us a well-defined interpretation of the next operator:
Xϕ holds for P if ϕ holds after the next update of a global
variable used in the LTL C expressions. In many situations,
this interpretation of X is not directly useful in assessing
program correctness; it is often appropriate to write X-free
stutter-invariant formulas, following Lamport [33]. We iden-
tify a C program P with the set of all traces T (P) that cor-
respond to this Kripke structure and say that an LTL formula
ϕ holds for P if ϕ holds for all w ∈ T (P).

Note that we use a linear-time rather than a branching-time
approach and thus there are no explicit path quantifications
(i.e., CTL∗-style operators A and E). There is, however, an
implicit universal quantification over all possible interleav-
ings and program executions.

3.2 LTL over finite traces

The standard LTL semantics is defined over infinite traces,
but as we are using a bounded model checker to analyze the
program, we explore only finite traces. Like other bounded
model checkers [11], ESBMC bounds the program execu-
tions by limiting the number of times a loop is unrolled,
rather than limiting the length of traces.2 This guarantees that
loop invariants are respected over the traces. If the program
contains at most one potentially unbounded loop, then the
finite traces explored by ESBMC are proper prefixes of the
potentially infinite traces of the original program. If the pro-
gram contains several potentially unbounded loops, then we
can still analyze it, using the --partial-loops option.
In this case, however, the observed finite traces are not nec-
essarily proper prefixes of the original program traces and
our approach can produce false results, as the symbolic exe-
cution can continue past unsatisfied loop termination condi-
tions.

We use the notation P|k to denote the k-fold loop unwind-
ing of the program P . Consider for example the three pro-
grams shown in Fig. 2 and the request–response formula
γ ≡ G({s==0} → F{s==1}). Since all three programs
alternate infinitely often between s==0 and s==1, the
single infinite trace produced by each program satisfies γ
under the standard LTL semantics. The situation, however,

2 Unstructured goto C code is also handled; every execution of a
backward jump counts as a “loop iteration” associated with that goto.

123

Model checking LTL properties with bounded traces 69

Fig. 2 Programs with identical infinite traces but different behavior
on finite unwindings for γ ≡ G({s = 0} → F{s = 1})

looks different for the traces produced by finite unwindings
(with increasing loop bounds) of the program loops, as the
loop structure of the program determines the lengths of the
finite prefixes that are considered. P1 ends with s==1 (i.e.,
responds to the request) if we unwind the loop an odd num-
ber of times, and with s==0 (i.e., a pending request) oth-
erwise, P2 always ends with s==0, while P3 always ends
withs==1. P3 is thus intuitively better behaved than both P2

(which is consistently wrong) and P1 (which behaves errati-
cally). The standard (infinite trace) LTL semantics does not
distinguish between the programs.

There is a fundamental problem with applying LTL to
finite traces. It is caused by extending the standard interpre-
tation of X as a strong (or existential) next operator [29] to
finite traces, which requires the existence of a next state to
hold. This is counterintuitive for finite traces, since X true is
now no longer a tautology, as |�F (i.e., the standard inter-
pretation applied to finite traces) gives us for all formulas ϕ,
[u |� Xϕ]F = ⊥ if u1 = ε [6].

Several approaches tweak the syntax or semantics of LTL
to remedy this situation. Since G and F can be defined rela-
tively straightforwardly on finite traces, Giannakopolou and
Havelund [21] suggested removing X and work with an X-
free subset of LTL. The syntax can instead be extended by
adding an additional weak (or universal) next operator X [35],
which complements the strong next and holds if there is no
next state: [u |� Xϕ]F = � if u1 = ε. Hence, X true is
a tautology. This also gives unwinding laws for F and G,
namely Fϕ ≡ ϕ ∨ XFϕ and Gϕ ≡ ϕ ∧ XGϕ. Alterna-
tively, the distinction between strong and weak next can be
encoded into the semantics rather than the syntax, via two
different semantic functions that coincide on the temporal
and most Boolean operators, but differ on negation (which
flips between both functions) and the atomic propositions,
where they reflect the behaviors of strong and weak next,
respectively [19]. Finally, the finite traces can be systemat-
ically extended, e.g., by infinite stuttering of their last state
[33], to allow the use of standard semantics, i.e., defining
[u |� ϕ]∞ = [uuωn−1 |� ϕ]ω for a finite trace u of length n.
This is also called the infinite extension semantics [4], and
we say that a BA corresponding to ϕ stutter accepts u if
[u |� ϕ]∞ = �.

Under the infinite extension semantics,γ (see Fig. 2 again)
now holds for all unwindings of P3, but not for the unwind-
ings of P2 or P1. However, in a two-valued logic, we cannot
distinguish between a formula that (truly) holds because we
have seen a good prefix [30] and so all possible continuations
of the observed finite trace will be models as well, and one
that (presumably) holds because we have not yet seen a bad
prefix (i.e., a finite trace that cannot be prefix of a model) or
because it holds if we stutter the final state infinitely often. In
order to realize this distinction, we use a larger truth domain.
Bauer et al. [5–7] have proposed and analyzed two differ-
ent domains, B3 = {⊥, ?,�}, with ⊥ ? �, ⊥ = �, and
? = ?, and B4 = {⊥,⊥p,�p,�}, with ⊥ ⊥p �p �,
⊥ = �, and ⊥p = �p. Under |�3, finite traces are mapped
to � (resp. ⊥) iff they are good (resp. bad) prefixes; all other
finite traces are considered “ugly” and are mapped to the
inconclusive truth value ? [5,7]. In B4, ? is refined into the two
truth values ⊥p (“presumably false”) and �p (“presumably
true”). The interpretation function |�4 then uses the finite
trace semantics with weak next to distinguish between the
two cases (i.e., [u |� ϕ]4 = ⊥p iff u is an ugly prefix and
[u |� ϕ]F = ⊥, and similarly for �p) [6].

Our analysis here is based on B4 as well, but we use a
different interpretation function from Bauer et al. [6]. In par-
ticular, we use the infinite extension semantics to resolve
ugly prefixes into presumably good or presumably bad. The
advantage of this approach is that we do not need to resort to
the weak-next operator and can define the finite trace seman-
tics in terms of the standard semantics only. The use of stutter
extension in this way is naturally compatible with the stutter-
invariant semantics introduced by Lamport [33] for computer
programs but does not require it.

Definition 2 The bounded trace semantics of LTL formulas
is given by

[u |� ϕ]B =
⎧
⎪⎪⎨

⎪⎪⎩

� iff ∀w ∈ Σω · [uw |� ϕ]ω = �
�p iff [uuωn−1 |� ϕ]ω = � ∧ ∃w ∈ Σω · [uw |� ϕ]ω = ⊥
⊥p iff [uuωn−1 |� ϕ]ω = ⊥ ∧ ∃w ∈ Σω · [uw |� ϕ]ω = �
⊥ iff ∀w ∈ Σω · [uw |� ϕ]ω = ⊥

for a finite trace u ∈ Σ∗ of length n > 0 and an LTL formula
ϕ.

In our case, all program traces are guaranteed to be non-
empty, because all global variables have defined initial val-
ues, which then form the initial state. We extend the interpre-
tation to sets of traces by taking the meet over all elements,
i.e., [U |� ϕ]B = �

u∈U [u |� ϕ]B . We say thatϕ holds (resp.
presumably holds) for a C program P if [T (P) |� ϕ]B = �
(resp. �p). We finally say ϕ holds (resp. presumably holds) if
[Σω |� ϕ]B = � (resp. �p) and define the notion of failing
resp. presumably failing correspondingly.

123

70 J. Morse et al.

The bounded trace semantics is an extension of our ear-
lier work [37] where we only used the infinite stutter seman-
tics. Consequently, we were effectively working only with
the inconclusive truth values ⊥p and �p, while we add the
definitive truth values ⊥ and � here.

3.3 LTL model checking versus LTL run-time verification

Finite LTL semantics similar to the bounded trace semantics
we are using here have been developed largely for run-time
monitoring and verification purposes [34], and due to the
focus on finite traces, our approach has some similarities with
run-time verification, but one key difference remains. Run-
time verification only considers actually observed behaviors,
one at a time, while we analyze all possible behaviors at the
same time. This difference becomes prominent with non-
determinism, even for single-threaded programs. Consider
for example the program Q

int p=0, q=0; p=1; if(*){p=0};
if(*){q=1};

where “*”denotes a non-deterministic choice and p and q
are zero-initialized global variables. Q can produce four
finite traces, depending on the particular non-deterministic
choices:

(i) [{p == 0}∧{q == 0}, {p == 1}∧{q == 0}],
(ii) [{p == 0}∧{q == 0}, {p == 1}∧{q == 0},

{p == 1}∧{q == 1}],
(iii) [{p == 0}∧{q == 0}, {p == 1}∧{q == 0},

{p == 0}∧{q == 0}], and
(iv) [{p == 0}∧{q == 0}, {p == 1}∧{q == 0},

{p == 0}∧{q == 0}, {p == 0}∧{q == 1}].

Now, consider the LTL formula ψ ≡ X({p == 1} U
{q == 1}). Clearly, ψ does not hold for the traces (i i i) and
(iv), and over these, |�3, |�4, and |�B all map ψ to ⊥. How-
ever, in run-time verification, there is no guarantee that we
ever observe these traces, so the assurance we gain from its
results is limited. Our approach, however, will work out that
[T (Q) |� ψ]B = ⊥ and hence Q can fail ψ . Moreover, if
we consider Q′ to be the variant of Q where q is initialized
with one, we find [T (Q′) |� ψ]B = � as well. Finally, if we
change Q to Q′′

int p=0, q=0; p=1; if(*){q=1};

then (i i i) and (iv) become impossible, and our approach
will calculate [T (Q′′) |� ψ]B = ⊥p, meaning that no finite
trace produced by Q′′ is a definitive counterexample but, on
stuttering, ψ does not hold for all traces.

4 Characterizing program behaviors using B4

Definition 2 characterizes the truth value in B4 of an LTL
formula ϕ with respect to a single finite trace u. In this sec-
tion, we now show how we can use the Büchi automaton
for the never claim to effectively calculate the truth value
of the formula with respect to the finite traces of a pro-
gram P . In Sect. 4.1, we briefly recall the basic notions of
Büchi automata. In Sect. 4.2, we characterize the relation-
ship between truth values in B4 and validity of never claims
over B2, while we describe the high-level structure of our
algorithm in Sect. 4.3.

4.1 Büchi automata

Büchi automata (BA) are finite-state automata over infi-
nite words first described by Büchi [8]. We follow Holz-
mann’s presentation [24] and define a BA as a tuple B =
(S, s0, L , T, F) where S is a finite set of states, s0 ∈ S the
initial state of the BA, L a finite set of labels, T : S×L → 2S

a state transition function and F ⊆ S a set of accepting states.
A run is a sequence of state transitions taken by B as it oper-
ates over some input. A run is accepted if B can pass through
an accepting state s ∈ F infinitely often along the run. B may
be deterministic or non-deterministic but in the following, we
will consider only non-deterministic BAs, since determinis-
tic BAs need a more complicated acceptance condition in
order to model LTL. A BA is in reduced form [1] if it has no
rejecting traps, i.e., if the BA has a possible next state, then
there is some extension of the trace that is accepted.

A number of algorithms exist for converting an LTL for-
mula to a BA accepting a program trace [20,22,42]. We
use the ltl2ba [20] algorithm and tool. Figure 3 illus-
trates the BA produced from the example LTL formula in the
introduction. Its labels (i.e., input symbols) are propositions
composed from the primitive C expressions used in the LTL
formula.

4.2 Truth values in B4 and standard validity of never claims

As noted above, Definition 2 characterizes the truth value in
B4 of an LTL formula ϕ with respect to a single finite trace
u. However, for model checking ϕ over a program P , this
is not yet suitable. First, we need to express the truth value
in B4 in terms of the validity of the never claim under the
two-valued standard semantics. This allows us to use the BA
for the never claim directly and avoids the need to define an
explicit acceptance criterion for the four-valued logics. The
following lemma addresses this problem. Note that we do not
need a complete characterization of all truth values in B4.

123

Model checking LTL properties with bounded traces 71

Fig. 3 The left BA accepts the
example from the introduction,
G({pressed} → F{charge > min}).
The right BA is its negation,
used for the never claim in our
monitor

Lemma 1

(i) [u |� ϕ]B=� iff �w ∈ Σω · [uw |� ¬ϕ]ω = �
(i i) [u |� ϕ]B � �p iff [uuωn−1 |� ¬ϕ]ω = ⊥
(i i i) [u |� ϕ]B = ⊥ iff ∀w ∈ Σω · [uw |� ¬ϕ]ω = �

Proof (i) Since the standard semantics |�ω (cf. Fig. 1)
is defined over B2, �w ∈ Σω · [uw |� ¬ϕ]ω = � is
equivalent to ∀w ∈ Σω · [uw |� ¬ϕ]ω = ⊥, and thus
to ∀w ∈ Σω · [uw |� ϕ]ω = �, which gives us the
claim.

(i i) Similarly, [uuωn−1 |� ¬ϕ]ω = ⊥ is equivalent to
[uuωn−1 |� ϕ]ω = �, which holds if and only if
[u |� ϕ]B = � or [u |� ϕ]B = �p.

(i i i) This follows directly from the definitions of |�ω and
|�B .
	

Second, the program P may be non-deterministic and pro-
duce more than one trace. We thus need to consider the mini-
mum truth value attained over all of its possible traces T (P).
The following lemma addresses this problem.

Lemma 2

(i) [U |� ϕ]B = � iff �u ∈ U, w ∈ Σω ·
[uw |� ¬ϕ]ω = �

(i i) [U |� ϕ]B � �p iff �u ∈ U · [uuωn−1 |� ¬ϕ]ω = �
(i i i) [U |� ϕ]B = ⊥ iff ∃u ∈ U ·∀w ∈ Σω · [uw |� ¬ϕ]ω

= �

Proof Recall that
�

u∈U [u |� ϕ]B = [U |� ϕ]B . Then:

(i) By Lemma 1 �u ∈ U, w ∈ Σω · [uw |� ¬ϕ]ω =
� is equivalent to ∀u ∈ U · [u |� ϕ]B = �; hence,
[U |� ϕ]B = �.

(i i) By definition of |�ω, �u ∈ U · [uuωn−1 |� ¬ϕ]ω = � is
equivalent to ∀u ∈ U · [uuωn−1 |� ϕ]ω = �, which by
definition of |�B means that ∀u ∈ U ·[u |� ϕ]B � �p,
and thus [U |� ϕ]B � �p.

(i i i) By the definitions of |�ω and |�B we have that ∃u ∈
U · ∀w ∈ Σω · [uw |� ¬ϕ]ω = � is equivalent to
∃u ∈ U · [u |� ϕ]B = ⊥ and thus [U |� ϕ]B = ⊥ as
well.
	

4.3 Algorithm structure

Lemma 2 rephrases the definition of validity in B4 into a
form that is suitable for model checking a program against a
standard non-deterministic never claim BA. In particular, in
all but the inner clause of the test for ⊥, the quantifiers are
existential and are thus compatible with the existential (i.e.,
optimistic) search for accepting traces.

In the following, we use BA¬ϕ to denote the never claim
BA for the LTL formula ϕ. Moreover, we assume that all the
accepting traps have been replaced with a single accepting
state with a transition on true to itself and that BA¬ϕ is in
reduced form [2]. These assumptions make the application
of the tests below straightforward.

[T (P) |� ϕ]B = �: As BA¬ϕ is in reduced form, it can-
not accept the program trace any longer if it has no tran-
sition to a next state, and the trace can be pruned. If and
only if all traces are pruned, the program evaluates to �.
Note that this cannot happen [2] if ϕ is a (non-trivial)
classical safety property [1].
[T (P) |� ϕ]B = ⊥: If BA¬ϕ reaches an accepting trap
for any trace, ϕ evaluates to ⊥ over the program, with the
trace returned as a witness. Note that this cannot happen
[2] if ϕ is a classical liveness property [1].
[T (P) |� ϕ]B = �p: If the property does not evaluate to
� or ⊥, we check its stutter acceptance. A simple reach-
ability analysis of BA¬ϕ , given the transitions enabled in
the final program state, allows us to check for possible
stutter acceptance at the end of each symbolically gen-
erated set of traces. If no accepting cycle is found, the
property evaluates to �p, with one of the traces returned
as a witness.
[T (P) |� ϕ]B = ⊥p: If BA¬ϕ stutter accepts for at least
one trace, the property evaluates to ⊥p and the trace is
returned as witness.

Note that the different cases are not independent of each
other, due to the inequality in Lemma 2 (i i). As we are look-
ing for a witness to the worst bounded behavior that the pro-
gram can exhibit when we model check, the actual imple-
mentation of the algorithm (cf. Sect. 6) needs to check the
cases in a specific order.

123

72 J. Morse et al.

Table 1 Final symbol valuations and their corresponding stutter-
accepting states

Final symbol Stutter-accepting states

¬{charge > min} ∧ ¬{pressed} {2}

¬{charge > min} ∧ {pressed} {init, 2}

{charge > min} ∧ ¬{pressed} ∅
{charge > min} ∧ {pressed} ∅

4.4 Example

As an example, consider the BA on the right of Fig. 3, i.e., the
never claim BA for G({pressed} → F{charge > min}).
This BA is generated by ltl2ba and is already optimized,
and in particular in reduced form. Hence, it can accept on
some infinite suffix from any state, and the set of optimisti-
cally accepting states is {init, 2}. There is no explicit trap
state, and thus, as this is an optimized BA, the set of states
which will accept for all infinite suffixes is empty. The inter-
esting behavior of this request–response liveness condition
is, as explained further in Sect. 5.3, restricted to its behavior
on infinite stutter. There are four possible infinite stutter suf-
fixes and their accepting sets are shown in Table 1. Hence,
if {charge > min} and {pressed} are both false in the
final program state, the BA stutter accepts only if it is in state
2, and thus, the trace is presumably failing only then.

5 Checking safety, co-safety, and liveness properties

5.1 Safety properties

In an imperative language such as C, it is common to test the
validity of safety or invariant properties at various points in
the program execution via assert-statements. These may
be checked during program execution using the standard C
library and, in conjunction with a suitable test suite, allow
checking a variety of runs of the code as noted in Sect. 3.3.
They are also recognized and checked during symbolic exe-
cution by ESBMC, which gives an exhaustive examination
of their validity for all (bounded) execution traces. Thus, the
code fragment on the left of Fig. 4 will be verified success-
fully as the loop invariant i+j==count holds whenever the
assert-statement is executed. It is, however, often more
convenient to assert a safety property everywhere except
within a specific region in which updates are taking place,
rather than just at particular locations. This is particularly
attractive in languages such as C with limited support for
data encapsulation: data that would be considered a private
instance field in an object-oriented language is modifiable in
C by a library’s clients.

The classical safety property Gϕ states that ϕ must hold
throughout program execution. However, this is of little prac-

tical use as it stands, because ϕ will typically be violated by
any changes to its individual variables. Instead, we model
the permitted region in which the individual variables can
be updated using a global flag looking, which we set to
zero during an update, and use a guarded safety property
G({looking} → {i+ j == count}). The listing on the
right of Fig. 4 shows the modified fragment together with the
auxiliary code. In this case, the symbolic execution runs to
completion and ESBMC returns �p.

Since it is in principle always possible for a safety property
to be violated at some future time, no finite execution will
cause the never claim BA to reject a word outright. In our
approach, a terminated program generates an infinite trace
by stuttering indefinitely on its last symbol; in other words,
the global variables cease changing. Thus, stutter rejection
of the never claim (i.e., �p) constitutes correctness for any
terminating program. It is precisely our knowledge that the
program has terminated (i.e., that the ESBMC run has com-
pleted without violating any unwind assertions) that confirms
the program correct against the specification.

We can instead modify our LTL specification to capture
explicitly the termination of the program; this is a natural
use for the U operator. We simply add a second auxiliary
variable done to capture program termination; this is ini-
tialized to zero and set to one right before the program fin-
ishes. We then use the LTL specification ({looking} →
{i+ j == count})U{done}. In this case, ESBMC reports
a successful verification (i.e., �) because the never claim BA
fails; the invariant holds until done becomes true.

Note that, while accurately expressing a safety property
over a terminating program, the second LTL expression does
not meet the classical definition of a safety property [1] as
finite prefixes can guarantee rejection of the never claim.

5.2 Co-safety properties

Co-safety properties [7] often reflect convergence or termina-
tion conditions. They are the converse of safety properties;
they can be demonstrated to be true by some finite trace.
Technically, they are a subset of liveness properties [1] as,
whatever the initial trace, there is some future extension that
can satisfy them. A co-safety property can never evaluate to
⊥ in B4.

If we work again from the example shown in Fig. 4, then
the LTL formula F{j == 6} expresses the termination (co-
safety) condition that j will eventually reach its final value.
When the program runs to completion, the condition is satis-
fied and ESBMC reports successful verification (i.e., returns
�). If we artificially restrict the number of loop interactions
by setting the ESBMC flag --unwindset 1:4 to restrict
the program loop to four iterations, ESBMC reports “pre-
sumably bad” (i.e., returns ⊥p). This is typical of a co-safety
property; a gradually extended partial trace will continuously

123

Model checking LTL properties with bounded traces 73

Fig. 4 C program with a safety assertion (left) and a monitor variable for a guarded safety property (right)

report “presumably bad” (as the necessary event has not hap-
pened) until it reports successful verification.

5.3 True liveness properties

Safety and co-safety properties have natural definitions over
both finite and infinite traces, i.e., for terminating and for
non-terminating programs. In contrast, true liveness proper-
ties3 are generally regarded as well defined only over infinite
words. It is thus a challenge to use a bounded model checker
to explore the true liveness properties of a program.

One of the simplest true liveness properties is a request–
response formula of the form G(ϕ → Fψ). The program is
always required to respond to the request ϕ by producing a
response ψ . We may examine this behavior with the simple
program

unsigned int i=0; int main()
{ while (1) i++; };

and the property G({i%2 == 0} → F{i%3 == 0}). This
property has the typical feature of a true liveness property: no
finite trace can determine acceptance or rejection. A simple
static analysis which searches for rejecting and accepting
traps in the never claim BA already shows that this formula
will (regardless of the program) never result in a definitive
outcome (i.e., ⊥ or �).

In general, the regular appearance of “presumably true” as
we extend the length of the investigated prefix trace is charac-
teristic of good programs under a request–response liveness
property, while bad programs may never result in “presum-
ably true.” For this program, as we progressively increase the
unwind bound from 1 to 12, the program’s behavior oscil-

3 The classical definition of liveness properties [1] includes co-safety
properties as well. Here we use the term true liveness property to exclude
co-safety properties.

lates between “presumably true” (i.e., �p) and “presumably
bad” (i.e., ⊥p), and ESBMC reports:

�p,⊥p,�p,⊥p,⊥p,�p,�p,⊥p,�p,⊥p,⊥p,�p

In this particular case, we have bounded the only program
loop in such a way that our trace extends by one symbol with
each increase in the bound. More general programs can be
more difficult to examine; if, for example, we have to bound
several loops, the finite traces we observe may not even be
valid prefixes of the real program behavior. Nevertheless,
in well-designed programs, loop iterations should indepen-
dently meet request–response liveness conditions, and as we
increase the unwind bounds on the various loops, we would
expect to see regular appearances of �p.

A variant of the request–response liveness formula is often
used as a fairness formula. The formula GF{p} expresses that
the C expression p is true infinitely often at all times in the
future. Such conditions can, for example, be conjoined into
expressions of the form (

∧
i GF ρi) → G(ϕ → Fψ), which

are easily handled by our tools. Note that such expressions
were the original motivation for the development of the com-
pact BAs produced by ltl2ba [20].

Some liveness properties are resistant to an analysis with
finite traces. “Toggle” properties such as G((ϕ → F¬ϕ) ∧
(¬ϕ → Fϕ)) can be seen from our static analysis to have
no stutter-accepting prefixes. The static analysis of the never
claim BA for this formula shows that it responds with ⊥p

to all (non-empty) finite traces. Unfortunately, our tools are
of little further use in this case, other than to confirm the
impossibility of the task set in front of them. Thus, checking
the formula

G(({i%2} → F¬{i%2}) ∧ (¬{i%2} → F{i%2}))
over the above program, as we progressively unwind, we see

⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p,⊥p, . . .

123

74 J. Morse et al.

Overall, our simple reachability analysis of the never claim
BA generated from the LTL formula allows us to determine,
for any LTL expression, which of the four elements of B4

can be returned, allowing us to estimate infinite or long-time
program behaviors from the data returned by ESBMC. We
are, therefore, able to distinguish safety, co-safety, “true”
liveness, and “toggle” liveness properties and thus to guide
the expectations of the ESBMC user.

5.4 Restricted alphabets

Some symbols of the alphabet Σ = 2Prop cannot arise dur-
ing program execution; this can happen if the various propo-
sitions are not independent. As an obvious example, con-
sider a formula that includes both {p} and {!p} as primitive
C expressions rather than negating in the LTL using {p} and
¬{p}. This causes no problems with the evolution of the BA
during program execution, nor with the computation of stut-
ter acceptance or rejection for ⊥p or �p. Our system will,
however, explore too large a symbol space when analyzing
for acceptance over all, or over no, future continuations. We
might, in such situations, report ⊥p where a more sensitive
analysis would report ⊥. ESBMC can itself be used, if nec-
essary, to confirm the independence of the C expressions.

6 Implementation

6.1 Monitor threads for bounded trace semantics

In our context, a monitor is some portion of code that inspects
the program state and verifies that it satisfies a given property,
causing an assertion to fail if this is not the case. A monitor
thread is a monitor that is interleaved with the execution of
the program under analysis. This allows the monitor to verify
that the property holds at each particular interleaving of the
program, detecting any transient violations between program
interleavings.

Monitor threads have been employed in SPIN to verify
LTL properties against the execution of a program [24]. A
non-deterministic BA representing the negation of the LTL
property is implemented in a Promela process, which will
accept a program trace that violates the original LTL property.
SPIN then generates execution traces of interleavings of the
program being verified and for each step in each trace runs
the Promela BA. This is called a synchronous interleaving.

In this work, we employ a similar mechanism to verify
LTL properties by interleaving the program under verifica-
tion with a monitor thread.

6.2 Checking LTL properties against a C program

We apply the approach described above to a C code base by
implementing the BA in C, which is then executed as a mon-

itor thread, interleaved with the execution of the program.
This approach involves two technical dimensions: the con-
version of the BA to C, and the interaction of the monitor
thread with the program under analysis.

6.2.1 Implementing Büchi automata in C

To implement our BA and monitor thread, we take the
ltl2ba tool and convert its usual Promela automaton out-
put to C. This output is combined with the output of the
reachability analysis information as described in Sect. 4.3 to
produce assertions about the automaton state and program
state at the end of the execution. The model checker itself
only recognizes successful or failed verifications of a pro-
gram, so we report the discovery of a good prefix (i.e., �)
as a successful verification, and all other trace classifications
as assertion failures with the assertion message identifying
which type of trace has been found.

Listing 1 in the Appendix shows the C implementation of
a monitor, with the never claim BA in Fig. 3 (see page 7)
contained in the function ltl2ba_fsm (lines 12–43).

ESBMC’s symbolic execution of the original program
then drives the evolution of BA¬ϕ through the possible
states. However, since the code for BA¬ϕ is not actually,
but only symbolically executed, we do not model the non-
determinism of the BA directly in the C code (e.g., by keeping
a set of current states) and can instead represent the cur-
rent states of the BA as a non-deterministic but properly
constrained single integer variable. That is, the C code will
transition only from one state to another, not from one sub-
set of states to another. We then rely on the model checker
to explore all possible transitions. This makes good use of
capabilities of the SMT solver and substantially simplifies
the implementation of the monitor. In particular, there is no
need to convert the BA into deterministic form, which can
lead to an explosion in the number of BA states.

An infinite loop (lines 14–42) encapsulates the state tran-
sition code. To model non-deterministic transitions from any
particular state, we take a non-deterministic value (line 15)
and then attempt all transitions (lines 19 and 22), depend-
ing on the non-deterministic value. This allows the model
checker to explore all transitions available. Each transition
is guarded by an assume-statement, which ensures that a
transition is only permitted when the current state of pro-
gram under analysis satisfies the transition’s guard.

The test harness generated by our tool calls ltl2ba_
start_monitor (lines 44–52) when modelling begins
and ltl2ba_finish_monitor (lines 72–93) when
modelling ends in order to identify the start and end of the
analysis. Given that we operate in the context of bounded
model checking, program termination is guaranteed, as any
infinite loop is unrolled only to the length of the bound and

123

Model checking LTL properties with bounded traces 75

thread deadlocks that might otherwise prevent termination
are separately detected by ESBMC [15].

Once the program terminates, ltl2ba_finish_
monitor inspects the current automaton state and program
state, and determines from the precomputed reachabil-
ity analysis of the automaton the truth of the particu-
lar lattice value being assessed. This precomputed data is
held in the arrays_ltl2ba_stutter_accept_table,
_ltl2ba_good_prefix_excluded_states, and
_ltl2ba_bad_prefix_states. These indicate whe-
ther the current symbol and state stutter accept (�p), prohibit
a �-trace, or indicate a ⊥-trace, respectively. Multiple runs of
ESBMC can be required to determine the bounded trace inter-
pretation of this (potentially non-deterministic) interleaving
as we search for the smallest truth value for which there is a
counterexample.

6.2.2 Interacting with the existing code base

LTL formulas allow verification engineers to describe pro-
gram behavior using propositions about program states. To
describe the state of a C program, we support the use of C
expressions as propositions within LTL formulas. Any char-
acters in the formula enclosed in curly brackets are inter-
preted as a C expression and as a single proposition within
LTL. The expression itself may use any global variables that
exist within the program under analysis as well as constants
and side-effect free operators. The expression must also eval-
uate to a value that can be interpreted as a truth value under
conventional C semantics.

For example, the following liveness property verifies that
a certain input condition results in a timer eventually increas-
ing:

G(({press == 4} ∧ {mstate == 1})
→ F{stime > refstime})

and the following safety property checks a buffer bound con-
dition:

G({buffer_size! = 0} → {next < buffer_size})
Within the BA (see Listing ?? again), these expressions

are required for use in the guards that prevent invalid transi-
tions being explored. We avoid using the expressions directly
in the BA; instead, ESBMC searches the program under ver-
ification for assignments to global variables used in the C
expression and then inserts code to update a Boolean variable
corresponding to the truth of the expression (lines 2 and 5)
immediately after the symbol is assigned to. In case multi-
ple propositions update on the same variable, re-evaluations
are executed atomically. All modifications are performed on
ESBMC’s internal representation of the program and do not
alter the code base.

However, this transformation does not handle indirect
assignments to variables, i.e., assignments through derefer-
encing pointers. Neither of our case studies perform such
actions—in fact, our application domain (embedded soft-
ware) tends not to feature indirect operations at all, instead
preferring to operate on a fixed set of configuration and data
variables, due to memory and environment limitations. As
a result, we have not attempted to extend our approach to
handle indirection. If required, it could be implemented by
taking all indirect assignments, comparing the pointer being
dereferenced to the addresses of variables appearing in the
C expression, and updating the relevant Boolean variables if
the comparison is true.

6.2.3 Synchronous interleaving

In our previous work [37], we treated the monitor thread
as a normal program thread, interleaving with other threads
in the usual way. This approach had the benefit of requiring
few modifications to the model checker, but at the expense of
performance, with many thread interleavings produced by the
scheduler being discarded as they provided the monitor with
an inconsistent view of the program state. In turn, this effect
resulted in long verification times, even on small programs
with no intrinsic use of threads.

We have therefore changed our approach to perform a
deterministic and directed interleaving of the monitor with
the program under analysis. Code inserted after global vari-
able updates now calls a model checker intrinsic that causes
it to context switch to the monitor thread and then context
switch back once the monitor has run the BA a single step; the
monitor itself no longer behaves as a schedulable thread. This
technique effectively inlines the running of the BA at every
point of interest. It also ensures that verification of single-
threaded programs does not suffer from a multi-threaded state
explosion.

7 Case studies

We have tested the approach described in this paper against
a set of behavioral properties of a pulse oximeter firmware
and a bicycle monitoring computer. The first application is an
embedded firmware that we treat as single-threaded, whereas
the second application is a multi-threaded model of a data
collection computer for cyclists. All tests were run on an oth-
erwise idle Linux workstation4 using ESBMC version 1.205

and Microsoft Z3 version 2.19, with a time limit of 1 h to
execute.

4 2.67 Ghz Intel Xeon, 12Gb of memory, running Fedora 16.
5 Available from www.esbmc.org.

123

www.esbmc.org

76 J. Morse et al.

Table 2 Properties for verification of pulse oximeter firmware

Name Property

baud_conf G({brate == 1200} → F{TH1 == 0xE8})
keyb_start G({the_key == 1} → F{command == 1})
serial_rx G(({p_inDat == 1} ∨ {flag2 == 1}) →

F{flag1 == 1})
up_btn G(({press == 4} ∧ {mstate == 1}) →

F{stime > refstime})
start_btn G((¬{press == 1} ∧ F{press == 1}) →

F{q_startCall})
buflim G({buffer_size! = 0} →

{next < buffer_size})

7.1 Pulse oximeter

The pulse oximeter is a medical device responsible for mea-
suring oxygen saturation (SpO2) and heart rate (HR) in the
blood system using a noninvasive method [14]. The firmware
of the pulse oximeter is composed of device drivers (i.e., dis-
play, keyboard, serial, sensor, and timer), a system log com-
ponent that allows the developer to debug the code through
data stored in RAM, and an API that enables the application
layer to call the services provided by the platform. The final
version of the pulse oximeter firmware has approximately
3 500 lines of C code and 80 functions.

Here, we report the results of verifying the pulse oximeter
code against six properties selected from a previous SMV
model of the software [16], as shown in Table 2. Note that
all six properties hold for the code.

The first four properties are liveness properties of the gen-
eral form G(ϕ → Fψ), so that whenever an enabling con-
dition ϕ has become true, then eventually the property ψ is
required to become true as well. The up_btn formula checks
that when the up button is pressed (press == 4) and the
device is in a particular state (mstate == 1), then even-
tually an internal counter stime becomes larger than its
previous value (kept in the variable refstime inside the
test harness). The formula start_btn checks intuitively that
whenever there is a transition of press to one from any
other value, then q_startCallwill also become true now
or in the future. Note however that we are not checking for
a strict correspondence between changes in press and the
occurrences of q_startCall becoming true so that, for
example, the former can happen several times before the lat-
ter happens. Finally, buflim is a safety property that ensures
a ring-buffer output index does not exceed the allowed lim-
its. This check is similar to buffer overflow checks already
supported by ESBMC.

We formulated a test harness for each portion of the
firmware being tested to simulate the activity that the LTL
property checks. We then invoked ESBMC with different
loop unwind bounds. We also ran these tests against versions

Table 3 Results of testing LTL properties against pulse oximeter
firmware

Property loc k Original Modified

t (s) Result t (s) Result

baud_conf 178 1 1 �p 1 ⊥p

4 1 �p 1 ⊥p

10 1 �p 1 ⊥p

20 2 �p 2 ⊥p

keyb_start 50 1 1 �p 1 ⊥p

4 2 �p 2 ⊥p

10 5 �p 4 ⊥p

20 17 �p 15 ⊥p

serial_rx 584 1 1 �p 1 ⊥p

4 2 �p 2 ⊥p

10 7 �p 5 ⊥p

20 23 �p 25 ⊥p

up_btn 856 1 1 �p 1 �p

4 1 �p 1 �p

10 2 �p 2 �p

20 3 �p 3 ⊥p

start_btn 856 1 1 �p 1 ⊥p

4 1 �p 1 ⊥p

10 2 �p 2 ⊥p

20 3 �p 2 ⊥p

buflim 145 1 1 �p 1 ⊥
4 934 �p 4 ⊥

10 MO MO MO MO

20 MO MO MO MO

of the firmware deliberately altered to not match the LTL
formula to verify that failing execution traces are identified.

The results are summarized in Table 3. Here, the loc col-
umn contains the line count of the source file for the portion of
firmware being tested and k the loop unwinding bound speci-
fied for the test. The columns t and Result record the elapsed
time in seconds that the test took to run and the outcome
ESBMC reported for the test. A result of “TO” indicates the
test did not complete in the allowed time, and “MO” indicates
that ESBMC exhausted the available memory.

We first observe that ESBMC determines the expected
result for most test cases. Since the first five properties are
liveness properties, ESBMC reports the inconclusive results
�p and ⊥p instead of the definitive versions. We also observe
that the amount of time taken scales roughly linearly with
the unwind bound given in most tests. A notable exception
is the buflim test, which increases dramatically in time and
memory requirements. This performance hit is caused by a
large amount of program non-determinism in the portion of
code being LTL checked, making checking higher unwind
bounds unfeasible.

123

Model checking LTL properties with bounded traces 77

Finally, we observe that the up_btn property has incorrect
results for a number of cases. Here, the seeded error com-
bines a number of (in this case, three) consecutive keypresses
into one keypress event. This violates the property that the
internal counter stime always increases after the enabling
key press event. However, as every third keypress does result
in a keypress event, the unwind bounds of 1, 4, and 10 termi-
nate with the most recent keypress having caused a keypress
event, thus terminating in a �p state. This is an example of
a property that oscillates between ⊥p and �p as the unwind
bounds are changed, as discussed in Sect. 5.3.

7.2 Bicycle computer

The bicycle computer case study comprises a small C model
of a device designed to gather and display speed and distance
information about a cyclist’s journey. This case study con-
tains approximately 150 lines of code. The program is multi-
threaded and treats user input, display, and data collection
as separate processes. We test a number of (valid) properties
over the global state of the program, listed in Table 4.

Because this program is multi-threaded, checking it
using ESBMC results in a large number of distinct runs
of ESBMC’s SMT solver, each corresponding to different
thread interleavings. These have to be combined together to
report the worst (in the four-valued lattice) behavior of any
interleaving.

We test the program against the properties with a number
of different unwind bounds k and context switch bounds C .
Our results (cf. Table 5) show the correct output is determined
for each run, for a variety of loop unwind bounds and con-
text switch bounds. We note that verification time increases
exponentially with increases in the context bound, which is
as expected in multi-threaded verification.

The bicycle computer examples above are all safety prop-
erties. Verification of liveness properties in multi-threaded
code presents additional difficulties for our approach and is
currently practical only for small examples. Multi-threaded
safety failures are typically shallow, requiring only few inter-
leaves. In contrast, even liveness properties guaranteed by
loop invariants require that relatively large interleave bounds
be set to ensure that all threads run complete loop iterations.
More general liveness properties can depend on schedul-
ing between threads. The default pthreads behavior provides

Table 5 Results of testing LTL properties against bicycle model

Property C k = 1 k = 2

t (s) Result t (s) Result

dist_ovfl 1 1 �p 1 �p

2 7 �p 34 �p

3 56 �p 379 �p

tot_dist_ovfl 1 1 �p 1 �p

2 5 �p 24 �p

3 63 �p 368 �p

dist_rel 1 1 �p 2 �p

2 7 �p 32 �p

3 59 �p 542 �p

state_range 1 1 �p 2 �p

2 7 �p 42 �p

3 62 �p 478 �p

weak fairness and is accurately modelled by ESBMC. Live-
ness properties which depend on this weak fairness will, how-
ever, inevitably show violations for finite traces.

8 Related work

Related work in the area of finite LTL semantics has already
been discussed in Sect. 3. We will not discuss general
approaches to LTL symbolic model checking (see Rozier [41]
for an overview) or to software model checking (see Visser
et al. [46] for an overview) here, but focus on approaches that
specifically model check software against LTL properties.

SPIN [23] is a well-known software model checker
that operates on concurrent program models written in the
Promela modelling language. SPIN operates with explicit
state and uses state hashing to reduce the quantity of state
space it explores. SPIN also allows users to specify an LTL
formula to verify against the execution of a model by using
BA in a similar manner to our work. While SPIN is well
established as a model checker, the requirement to remodel
codebases in Promela can be time-consuming.

Java PathFinder is a Java Virtual Machine (JVM) that
performs model checking on Java bytecode. It also oper-
ates with explicit state and uses state matching to reduce the
search space, but can also operate symbolically for the pur-
pose of test generation and coverage testing. Verification of

Table 4 Bicycle computer
properties Name Property

dist_ovfl G({cycle_distance_m >= 0})
tot_dist_ovfl G({total_cycle_distance_m >= 0})
dist_rel G({cycle_distance_m <= total_cycle_distance_m})
state_range G({cur_state >= 0} ∧ {cur_state <= 3})

123

78 J. Morse et al.

LTL formulae can be achieved with the JPF-LTL [38] exten-
sion, which uses BA and method invocation monitoring to
inspect the execution of the model.

Staats and Heimdahl [43] take Simulink models and verify
that a prototype Simulink-to-C translator produces code that
satisfies the same properties as the Simulink model. A set of
predetermined safety properties described in LTL are verified
first against the Simulink model and then against the emitted
C code. A C monitor is devised, and a feature of the converted
model is used to select code locations where the monitor
must be inserted. Their approach is not designed to support
the checking of liveness or co-safety properties.

Leucker and Schallhart [34] review the field of run-time
verification and cover its differences from model checking, as
well as various LTL-like logics for analyzing finite prefixes of
traces. More expressive ways of describing system properties
are explored, as well as the potential for run-time analysis
beyond verification.

9 Conclusions and future work

Context-bounded model checking has already been used suc-
cessfully to verify multi-threaded applications written in low-
level languages such as C. However, the approach has largely
been confined to the verification of safety properties. In this
paper, we have extended the approach to the verification of
liveness properties given as LTL formulas against an unmod-
ified code base. We follow the usual approach of composing
the BA for the never claim with the program, but work at the
actual code level. We thus convert the BA further into a sep-
arate C monitor thread and check all interleavings between
this monitor and the program using ESBMC. We use a four-
valued LTL semantics to handle the finite traces that bounded
model checking explores.

Our results so far are encouraging, and we were able to
verify a number of liveness properties on the firmware of a
medical device; in future work, we plan to extend the eval-
uation to a larger code base and wider variety of properties.
There are still considerable opportunities to improve perfor-
mance and to execute on more capable computer platforms.
For multi-threaded simulations, the state hashing reported in
our SEFM 2011 contribution [37] has proved to be very use-
ful, cutting verification times by about 50 % on average. We
expect that an improved hashing implementation, for exam-
ple removing serialization, will improve these results further.

We are also keen to embrace the new C language stan-
dard’s [27] threading support and weak memory model; this
should allow us to substantially increase performance by
reducing the number of safe interleavings.

Acknowledgments This work was supported by a Royal Society
International Exchange Grant. The reviewers’ comments helped us to
improve our presentation.

Appendix: Sample monitor

123

Model checking LTL properties with bounded traces 79

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett.
21(4), 181–185 (1985)

2. Alpern, B., Schneider, F.B.: Recognizing safety and liveness.
Distrib. Comput. 2(3), 117–126 (1987)

3. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M.,
Schulte, W., Venter, H.: The Spec# programming system: chal-
lenges and directions. In: Meyer, B., Woodcock, J. (eds.) Proceed-
ings of Conference on Verified Software: Theories, Tools, Experi-
ments (VSTTE’05). Lecture Notes in Computer Science, vol. 4171,
pp. 144–152. Springer (2008)

4. Bauer, A., Haslum, P.: LTL goal specifications revisited. In: Coelho,
H., Studer, R., Wooldridge, M. (eds.) Proceedings of European
Conference on Artificial Intelligence (ECAI’10). Frontiers in Arti-
ficial Intelligence and Applications, vol. 215, pp. 881–886. IOS
Press (2010)

5. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the
ugly, but how ugly is ugly?. In: Sokolsky, O., Tasiran, S. (eds.)
Proceedings of the Workshop Runtime Verification (RV’07). Lec-
ture Notes in Computer Science, vol. 4839, pp. 126–138. Springer
(2007)

6. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics
for runtime verification. J. Log. Comput. 20(3), 651–674 (2010)

7. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification
for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20(4),
14 (2011)

8. Büchi, J.R.: Symposium on decision problems: On a decision
method in restricted second order arithmetic. In: Ernest Nagel, P.S.,
Tarski, A. (eds.) Proceedings of the 1960 International Congress for
Logic, Methodology and Philosophy of Science. Studies in Logic
and the Foundations of Mathematics, vol. 44, pp. 1–11. Elsevier
(1966)

9. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software
model checker Blast. STTT 9(5–6), 505–525 (2007)

10. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.:
Linear encodings of bounded LTL model checking. Log. Methods
Comput. Sci. 2(5), 1–64 (2006)

11. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-
C programs. In: Jensen, K., Podelski, A. (eds.) Proceedings of
the Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’04). Lecture Notes in Computer Sci-
ence, vol. 2988, pp. 168–176. Springer (2004)

12. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate
abstraction of ANSI-C programs using SAT. Formal Methods Syst.
Des. 25(2–3), 105–127 (2004)

13. Clarke, E.M., Lerda, F.: Model checking: software and beyond. J.
UCS 13(5), 639–649 (2007)

14. Cordeiro, L., Barreto, R.S., Barcelos, R., Oliveira, M.N., Lucena,
V., Maciel, P.R.M.: Agile development methodology for embed-
ded systems: a platform-based design approach. In: Leaney, J.,
Rozenblit, J.W., Peng, J. (eds.) Proceedings of the Conference on
Engineering of Computer Based Systems (ECBS’07), pp. 195–202.
IEEE Computer Society (2007)

15. Cordeiro, L., Fischer, B.: Verifying multi-threaded software using
SMT-based context-bounded model checking. In: Taylor, R.N.,
Gall, H., Medvidovic, N. (eds.) Proceedings of the International
Conference on Software Engineering (ICSE’11), pp. 331–340.
ACM (2011)

16. Cordeiro, L., Fischer, B., Chen, H., Marques-Silva, J.: Semifor-
mal verification of embedded software in medical devices con-
sidering stringent hardware constraints. In: Chen, T., Serpanos,
D.N., Taha, W. (eds.) Proceedings of International Conference on
Embedded Software and Systems (ICESS’09), pp. 396–403. IEEE
(2009)

17. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded
model checking for embedded ANSI-C software. In: Grundy, J.,
Taentzer, G., Heimdahl, M. (eds.) Proceedings of the Conference
on Automated Software Engineering (ASE’09), pp. 137–148. IEEE
Computer Society (2009)

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property
specifications for finite-state verification. In: Boehm, B.W., Gar-
lan, D., Kramer, J. (eds.) Proceedings of the International Con-
ference on Software Engineering (ICSE’99), pp. 411–420. ACM
(1999)

19. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Camp-
enhout, D.V.: Reasoning with temporal logic on truncated paths.
In: Hunt, W.A., Somenzi, F. (eds.) Proceedings of the Conference
on Computer Aided Verification (CAV’03). Lecture Notes in Com-
puter Science, vol. 2725, pp. 27–39. Springer (2003)

20. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In:
Berry, G., Comon, H., Finkel, A. (eds.) Proceedings of the Confer-
ence on Computer Aided Verification (CAV’01). Lecture Notes in
Computer Science, vol. 2102, pp. 53–65. Springer (2001)

21. Giannakopoulou, D., Havelund, K.: Automata-based verification
of temporal properties on running programs. In: Richardson, D.,
Feather, M.S., Goedicke, M. (eds.) Proceedings of the 16th IEEE
International Conference on Automated Software Engineering
(ASE’01). pp. 412–416. IEEE Computer Society (2001)

22. He, A., Wu, J., Li, L.: An efficient algorithm for transform-
ing LTL formula to Büchi automaton. In: Proceedings of Con-
ference on Intelligent Computation Technology and Automation
(ICICTA’08), vol. 01, pp. 1215–1219. IEEE Computer Society
(2008)

23. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw.
Eng. 23(5), 279–295 (1997)

24. Holzmann, G.J.: The SPIN Model Checker—primer and reference
manual. Addison-Wesley, Boston, USA (2004)

25. Huth, M., Ryan, M.D.: Logic in Computer Science: Modelling and
Reasoning About Systems, 2nd edn. Cambridge University Press,
Cambridge, New York, NY, USA (2004)

26. ISO: ISO/IEC/IEEE 9945:2009 Information Technology—
Portable Operating System Interface (POSIX) Base Specifications,
Issue 7. International Organization for Standardization, Geneva,
Switzerland, December (2009)

27. ISO: ISO/IEC 9899:2011 Information Technology—Programming
languages—C. International Organization for Standardization,
Geneva, Switzerland, December (2011)

28. Jonsson, B., Tsay, Y.K.: Assumption/guarantee specifications in
linear-time temporal logic. Theor. Comput. Sci. 167(1&2), 47–72
(1996)

29. Kamp, H.W.: Tense logic and the theory of linear order. Ph.D the-
sis, Computer Science Department, University of California at Los
Angeles, USA (1968)

123

80 J. Morse et al.

30. Kupferman, O., Vardi, M.Y.: Model checking of safety properties.
Formal Methods Syst. Des. 19(3), 291–314 (2001)

31. Lahiri, S.K., Qadeer, S., Rakamaric, Z.: Static and precise detection
of concurrency errors in systems code using SMT solvers. In: Boua-
jjani, A., Maler, O. (eds.) Proceedings of Conference on Computer
Aided Verification (CAV’09). Lecture Notes in Computer Science,
vol. 5643, pp. 509–524. Springer (2009)

32. Lamport, L.: A new approach to proving the correctness of multi-
process programs. ACM Trans. Program. Lang. Syst. 1(1), 84–97
(1979)

33. Lamport, L.: What good is temporal logic? In: IFIP Congress,
pp. 657–668 (1983)

34. Leucker, M., Schallhart, C.: A brief account of runtime verification.
J. Log. Algebr. Program. 78(5), 293–303 (2009)

35. Manna, Z., Pnueli, A.: Temporal verification of reactive systems:
safety. Springer, New York (1995)

36. McMillan, K.L.: Symbolic model checking. Norwell, MA, USA
(1993)

37. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Context-bounded
model checking of LTL properties for ANSI-C software. In: Barthe,
G., Pardo, A., Schneider, G. (eds.) Proceedings of Conference
on Software Engineering and Formal Methods (SEFM’11). Lec-
ture Notes in Computer Science, vol. 7041, pp. 302–317. Springer
(2011)

38. Nguyen, A.C., Khoo, S.C.: Towards automation of LTL verifica-
tion for Java Pathfinder (2008). In: Proceedings of the 15th National
Undergraduate Research Opportunities Programme Congress, Sin-
gapore (2010)

39. Pnueli, A.: The temporal logic of programs. In: Proceedings of
Symposium on the Foundations of Computer Science (FOCS’77),
pp. 46–57. IEEE Computer Society (1977)

40. Rabinovitz, I., Grumberg, O.: Bounded model checking of concur-
rent programs. In: Etessami, K., Rajamani, S.K. (eds.) Proceedings
of Conference on Computer Aided Verification (CAV’05). Lecture
Notes in Computer Science, vol. 3576, pp. 82–97. Springer (2005)

41. Rozier, K.Y.: Linear temporal logic symbolic model checking.
Comput. Sci. Rev. 5(2), 163–203 (2011)

42. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. STTT 12(2),
123–137 (2010)

43. Staats, M., Heimdahl, M.P.E.: Partial translation verification for
untrusted code-generators. In: Liu, S., Maibaum, T.S.E., Araki, K.
(eds.) Proceedings of Conference on Formal Methods and Software
Engineering (ICFEM’08). Lecture Notes in Computer Science, vol.
5256, pp. 226–237. Springer (2008)

44. Vardi, M.Y.: An automata-theoretic approach to linear tempo-
ral logic. In: Moller, F., Birtwistle, G.M. (eds.) Logics for
Concurrency—Structure versus Automata. Lecture Notes in Com-
puter Science, vol. 1043, pp. 238–266. Springer (1996)

45. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to auto-
matic program verification (preliminary report). In: Proceedings of
the Symposium on Logic in Computer Science (LICS’86), pp. 332–
344. IEEE Computer Society (1986)

46. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model
checking programs. Autom. Softw. Eng. 10(2), 203–232 (2003)

Author Biographies

Jeremy Morse received his
Master of Engineering degree
in Computer Engineering at the
University of Southampton in
2010. He is currently studying
for a Ph.D. at the University
Southampton, and is involved in
local school outreach through the
Student Robotics project.

Lucas Cordeiro received the
B.Sc. degree in electrical engi-
neering and the M.Sc. degree
in informatics from the Fed-
eral University of Amazonas
(UFAM), in 2005 and 2007,
respectively. He received the
Ph.D. degree in computer sci-
ence from the University of
Southampton in 2011. Since
2011 he has been an adjunct pro-
fessor in the Electrical and Com-
puter Engineering Department at
UFAM. His work focuses on
software verification, bounded

(and unbounded) model checking, satisfiability modulo theories, and
embedded systems.

Denis Nicole is a Reader in Elec-
tronics and Computer Science at
the University of Southampton
UK, where he leads the Elec-
tronic Engineering Degrees. He
received his MA from St John’s
College Cambridge and a Ph.D.
in Theoretical Physics from the
University of Southampton. He is
a Chartered Electrical Engineer,
a Senior Fellow of the Higher
Education Academy and a mem-
ber of the steering committee of
Southampton’s GCHQ Cyberse-
curity Centre of Excellence.

123

Model checking LTL properties with bounded traces 81

Bernd Fischer received his
Ph.D. degree from the Univer-
sity of Passau, Germany. He is
currently an associate professor
for computer science at Stellen-
bosch University, South Africa;
he also continues his previous
appointment at the University
of Southampton. From 1998 to
2006, he was a research scien-
tist with USRA/RIACS at the
NASA Ames Research Center.
His research interests include
code generation, programming
languages, formal methods, soft-

ware reliability, and software verification, with a focus on bounded
model checking.

123

	Model checking LTL properties over ANSI-C programs with bounded traces
	Abstract
	1 Introduction
	2 Bounded model checking with ESBMC
	3 LTL over infinite and finite traces
	3.1 Linear-time temporal logic
	3.2 LTL over finite traces
	3.3 LTL model checking versus LTL run-time verification

	4 Characterizing program behaviors using mathbbB4
	4.1 Büchi automata
	4.2 Truth values in and standard validity of never claims
	4.3 Algorithm structure
	4.4 Example

	5 Checking safety, co-safety, and liveness properties
	5.1 Safety properties
	5.2 Co-safety properties
	5.3 True liveness properties
	5.4 Restricted alphabets

	6 Implementation
	6.1 Monitor threads for bounded trace semantics
	6.2 Checking LTL properties against a C program
	6.2.1 Implementing Büchi automata in C
	6.2.2 Interacting with the existing code base
	6.2.3 Synchronous interleaving

	7 Case studies
	7.1 Pulse oximeter
	7.2 Bicycle computer

	8 Related work
	9 Conclusions and future work
	Acknowledgments
	Appendix: Sample monitor

	References
	Author Biographies

