
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 22(1 1), 1011–1025 (NOVEMBER 1992)

ALADIN: A Scanner Generator for
Incremental Programming Environments

BERND FISCHER
Technical University of Braunschweig, Institute for Programming Languages and

Information Systems, Gaußtraße 11, D-3300 Braunschweig, Germany

CARSTEN HAMMER
Siemens AG, Corporate Research and Development, Dept. ZFE BT SE 42, Otto-Hahn-

Ring 6, D-8000 Munich 83, Germany

AND

WERNER STRUCKMANN
Technical University of Braunschweig, Institute for Programming Languages and

Information Systems, Gaußtraße 11, D-3300 Braunschweig, Germany

SUMMARY

A large number of scanner generators have been developed. Since they are restricted to the longest-
match rule, they are unsuitable for an incremental environment. We present the ALADIN system, which
is able to deliver more than a single token if required. Thus, an ambiguity may be passed to the
calling instance. Beyond this ‘incremental feature’, ALADIN is a well-structured and easy-to-understand
language. In contrast to existing systems, the desired behaviour of the generated scanners is completely
specified explicitly. Thus, the specifications are more abstract than in other systems. A prototype
implementation has shown that ALADIN-generated scanners have about the same performance as those
generated by Lex.

KEY WORDS Lexical analysis Scanner generator Incremental compiler

INTRODUCTION

Since the introduction of scanner generators as a general tool for compiler construc-
tion 1 in the mid-60s, a vast number of systems have been designed and implemented;
for example Lex , 2 Flex, 3 Rex, 4 GRAMOL, 5 LEXXO 6 and Alex. 7 This paper
describes another system called ALADIN (Advanced Lexical Analysers Description
method) which is especially designed for applications in incremental systems.

We shall first discuss requirements which result from the incremental environment
and the structure of programming languages, followed by a brief analysis of some
typical existing generators. We then describe the basic ideas of the ALADIN system
and outline an implementation. Performance data for some languages will be given.
A complete specification of the lexical part of Modula-2 8 is presented at the end of
this article.

Unlike other systems which aim at high speed 4 or ease of use, 6 ALADIN is

0038–0644/92/111011–15$12.50 Received 5 September 1990
© 1992 by John Wiley & Sons, Ltd. Revised 3 May 1991

1012 B. FISCHER, C. HAMMER AND W. STRUCKMANN

designed to be used with a wide range of programming languages. Its original
application was the PSG (programming system generator) 10,11 which is a tool for
generating language-specific programming environments. *

These programming environments include an incremental compiler and a hybrid
editor which supports a text-oriented and a syntax-directed mode simultaneously.
Other components of PSG such as library tools or prettyprinters may be added. PSG
consists of a set of generators (generator system), one for each component, and a
set of language-independent table drivers (nucleus). also one for each component.
Nucleus and generated tables together form the programming environment which
interacts with the programmer.

The table drivers for each component must be completely language-independent
to allow switching between different languages during a session. Therefore, the
generator must generate pure table data. This prohibits a language-definition langu-
age (LDL) with interspersed program fragments as used by Lex or Rex.

PROBLEMS IN CURRENT SYSTEMS

Requirements due to an incremental compiler

As already stated, ALADIN has been designed to work in an incremental environ-
ment. All components that need to support incremental compilation must meet some
additional requirements compared with standard components. For example they
must cope with problems arising from missing context. For a scanner generator these
requirements can be stated as follows:

1. A set of possible solutions must be returned, because the context that might
be used to solve lexical conflicts might not be known at the time of return.
The data type of the result must thus be SET OF token instead of token.

2. A Iookahead operator that includes arbitrary context makes no sense for the
same reason, and therefore must be discarded entirely. Nevertheless, the next
input character could be considered (if available).

3. The LDL has to deal with the complete character-set, including all control
characters. The control characters may be legal letters or symbols in some
languages (e.g. line wrap in C strings) or may be used to separate incomplete
program parts (fragments) from each other.

This will be illustrated by an example. Consider the following Modula-2 fragment

The characters and denote the beginning and end of the fragment, respectively.
A scanner that works according to the usual longest-match rule will consider the
characters 12. as a real literal. In an incremental system this behaviour (i.e. longest-
match) will lead to trouble. Subsequent edit actions may result in a context that
confirms the original decomposition (e. g. 12.0) or disproves it. If the fragment
is expanded to

* PSG is a joint project of the Technical University of Darmstadt and Siemens; ALADIN is a joint work of
Siemens and the Technical University of Braunschweig.

ALADIN: A SCANNER GENERATOR 1013

tokenizing will have to yield 〈 int, 12 〉, 〈 dot_dot, . . 〉, 〈 int, 15 〉. The scanner has to re-
read the characters 12, causing a loss of efficiency. Still worse, errors may appear.
After an expansion to

TYPE twelvetofifteen = [12.

returning the token 〈 real, 12. 〉 will cause an error although a valid continuation
obviously exists.

Requirements due to the structure of programming languages

Programming languages exhibit wide variety in their lexical structure. This remains
true even if only ‘modern’ format-free languages are considered. Comments, for
example, are delimited in as many variations as there are languages. Ada 13 uses the
‘endline comment’ which extends from a starting symbol (‘– –’) to the end of the
line. Most other languages use ‘parentheses comments’ which may sometimes be
nested as in Modula-2. The parentheses may consist of several characters and
sometimes different parenthesis styles may be used (e.g. Pasca1 14). Other lexical
units, e.g. notations for non-decimal integer values, exhibit similar variability. So,
two conclusions have to be drawn.

1. There is no general rule that applies to all languages, not even longest-match.
2. There is no small and self-contained set of alternatives that fits ‘almost all’

modern languages. Hence, searching for such a set is pointless.

Nevertheless, the lexical structures of languages share some basic concepts. These
concepts include equivalent characters and patterns, irrelevant characters and pat-
terns, non-regular patterns, conflict-solution strategies and different kinds of context-
dependencies (e.g. fixed or arbitrary lookahead, column notation).

How not to do scanner generators and why not

As mentioned above, a number of scanner generators now exist. They can be
ranked into three classes according to the degree of freedom that they give to the
user (i.e. the language-definer).

1. Paradigm-based systems use an existing or imaginary language as a pattern
which depicts and fixes the overall structure of the languages representable in
the system. Only some fine adjustments can be done by the language-definer.
Those systems such as LEXXO do not use regular expressions at all.

2. Mid-size systems normally use several modes of description at the same time,
one for each token class (e.g. reserved words, literals, comments). The descrip-
tion mode determines the membership to a particular token class uniquely, and
hence also the interpretation of each token. Regular expressions, for instance,
may only be used to describe literals. Additional control information such as
case sensitivity can be specified by setting flags. Most of the scanner generators,
including Alex and GRAMOL, work in this way.

3. General-purpose pattern-recognition systems, such as Lex or Rex, use regular

1014 B. FISCHER, C. HAMMER AND W. STRUCKMANN

expressions for the description of all tokens, regardless of the token’s class.
Arbitrary complex program fragments for each token serve as semantic actions.

A detailed discussion of the different systems is not within the scope of this paper.
We shall concentrate on the deficiencies that make these systems inappropriate for
our purposes.

The major deficiency is their inability to handle lexical ambiguities. Worse, there
is no simple way to extend these systems to allow ambiguity, since all these systems
use longest-match as their ‘golden rule’. They will deliver the token that belongs to
the longest possible lexeme. If a lexical conflict occurs because a lexeme matches
two different patterns, the token to be delivered is chosen in a fixed manner. Lex,
for example, uses the pattern’s declaration order. Mid-size systems use the semantics
of the token. A reserved word always takes priority over an identifier. Resolving
lexical conflicts, however, remains a problem even if more lookahead characters are
examined. Furthermore, the returned value cannot be a set of tokens, but must be
determined uniquely.

Another deficiency arises from the specification languages. ‘Non-standard’ items,
(such as nested comments) which constitute simple non-regular patterns cannot be
specified in a consistent way. The same is true for tokens that depend on a certain
position in a source line, as happens in FORTRAN.

Besides this systematic flaw there are some more characteristic deficiencies in each
class:

1. Paradigm-based systems are restricted to a small range of programming lan-
guages and are therefore obviously not suitable for our purposes.

2. To be able to scan all programming languages, mid-size systems must be capable
of describing every possible token class and every kind of control information.
Otherwise, each new language to be generated potentially needs a new gener-
ator version. This completeness is difficult to ensure.

3. Lex uses arbitrary program fragments extensively. It is more a preprocessor
tool than a real generator. Moreover, the Lex specification language is difficult
to use, even for an experienced user. Consider for example the rule

\ / *\ / *([ˆ \ / *]\ /* *+)**\ /;

which is appropriate for C’s comments and also describes the corresponding action
(i.e. ignoring comments).

SOLUTIONS IN ALADIN
Most of the problems in existing systems arise from a too-careless language design.
The definition languages consist merely of a collection of add-on features which
might be useful in special situations, but they do not have a uniform style. Adding
a new ‘incremental feature’ makes it even less uniform. Hence, a new approach
which uses only a few necessary components was taken.

One of the design objectives of ALADIN was a strict separation of pattern-
description and control-flow elements so that they could be treated independently,
and with no dependencies on each other. Systems that do not have this separation
exhibit the problem that a particular style of description strongly influences the
pattern’s interpretation.

ALADIN: A SCANNER GENERATOR 1015

The second objective is that the pattern-description style should be uniform
throughout the entire specification. The only description element in ALADIN is the
regular definition which is used regardless of whether a character set, a keyword or
a literal is defined. A regular definition consists of a defined name and a defining
regular expression which is associated with the name. If a name is used in a defining
expression it will be replaced by its own associated expression.

Even non-regular patterns such as nested comments may be specified in the same
way. The defined name itself can be used in its own defining expression, as in

com –> ″ { ″ (letter com)* ″ } ″ ;

Hence, we get a consistent improvement of regular expressions and do not need any
‘NESTED’ -commands as in GRAMOL or explicit counters as in Lex. All necessary
actions are done internally, by the generator itself. However, some restrictions must
be imposed for efficiency. These will be described later.

The final design objective is that there is no implicit control-flow procedure.
ALADIN allows the language definer to manipulate the behaviour of the generated
scanners in her/his own way. Only two mechanisms are required for this: grouping
and attributing.

Grouping means that tokens which share the same lexical characteristics (e.g.
priority levels) are ‘pooled’ together. All characteristics of a group must be given
explicitly in the form of recognition constraints. Arbitrary combinations of constraints
are possible as long as there are no contradictions. This grouping mechanism seems
to be similar to standard token classification (literals, delimiters, etc.) used by most
existing systems, but it is quite different for two reasons. First, an arbitrary number
of groups with arbitrary constraints can be specified, thus allowing the user to model
complex structures. Secondly, the constraints do not result from any kind of implicit
interpretation such as the order of the groups. This increases not only the flexibility
but also the clarity and reliability of the specifications.

Attributing is a mechanism for specifying a particular policy, either for a single
token or for a group. Token-level attributes are activated when a pattern matches.
The attributes pass information to the generator system (e.g. ‘deliver another token
if this pattern matches’) or cause some action within the driver (e.g. ‘ignore this
token if it is matched’). Attributing on the group level is a suitable way for the
specification of recognition constraints for a group.

We call the way ALADIN tokenizes the input multiple match. Every recognized
token is included in the set of returned tokens unless one of the following two
situations appears:

1. A particular policy has been specified explicitly.
2. Tokens defined in the same group share the same lexical characteristics and

may be seen as different lexemes of a ‘supertoken’. Thus, within a group the
longest match applies and a single token per group is returned.

Tokenizing continues until the next input character does not fit any of the patterns.
Owing to the multiple-match mechanism and the ability to specify an arbitrary

number of groups, no special ‘incremental feature’ is required. Tokens that might
cause problems because of missing context need only be specified in different groups.
Thus, the lexical conflicts are passed to the calling instance which is able to resolve
the conflicts.

1016 B. FISCHER, C. HAMMER AND W. STRUCKMANN

The following section briefly explains the ALADIN syntax. For the complete
syntax see Reference 12.

STRUCTURE OF THE LANGUAGE

Lexical elements of ALADIN

The lexical structure of ALADIN is very compact, while nevertheless remaining
clear. It is a format-free language whose tokens are separated by at least one white-
space character. The white spaces have no other meaning; in particular, they are
not delimiters for the patterns as in Lex. Any white space maybe replaced by an Ada-
like comment. The identifier pattern follows the usual standard—a letter followed by
arbitrarily many letters, digits and underscores. Only lower-case letters may be used
for identifiers, whereas ALADIN keywords are composed of upper-case letters.

ALADIN uses two kinds of literals: strings and cardinals. A string is an arbitrary
sequence of characters enclosed in double quotes. There is no character literal.
Instead, strings of length 1 are used.

Some special characters are used as operators, either as single-character operators
or as compound operators such as +, *, –>, etc.

Pattern description

As mentioned above, the only description element in ALADIN is the regular
definition, for example

name –> regular? expression*;

Regular definitions that are members of groups are treated like token definitions.
Other definitions are auxiliary and only facilitate the specification. The syntax of
the regular expressions roughly follows the Lex model, i.e. postfix operators are
used. Some items have been changed to improve legibility.

A regular expression extends from the arrow (–>) to a semicolon. Arbitrary
spaces, tabs and newlines may be used to ‘style up’ complex patterns. All terminal
symbols must be strings. Thus, ‘definition expansion’ (as it is called in Lex) no longer
needs to be tagged. Each name used in a pattern description is replaced by its
definition. Forward references are allowed. ALADIN also uses predefine identifi-
ers, similar to true and false in Pascal.

Character sets are used for modelling equivalence of characters. Members of a
character set are either single characters or identifiers which are also defined as
single characters or character sets themselves. Thus, no explicit set union operator
is necessary. Only the \-operator for set difference is required. In connection with
the predefine set all, which contains all representable characters, it is used for set
complementation, in a similar way to the mechanism used in Alex.

– – character set examples
oct_digit –> { ″ 0 ″ , ″ 1 ″ , ″ 2 ″ , ″ 3 ″ , ″ 4 ″ , ″ 5 ″ , ″ 6 ″ , ″ 7 ″ };
digit –> {oct_digit, ″ 8 ″ , ″ 9 ″ };
non_digit –> all \ digit;

ALADIN: A SCANNER GENERATOR 1017

If a name is used in its own pattern description, the standard expansion method
does not work, and another mechanism has to be defined. Two different situations
are possible. If the pattern describes a regular language, it must be a left or
right recursive expression. This is internally transformed into an equivalent regular
expression with postfix operators. Thus, the left-recursive definition for C’s octal
integers

oct_int –> oct_int oct_digit
 zero;

will be transformed internally into its equivalent

oct_int – > zero oct_digit*;

Yet another situation arises if such transformations are impossible because the
‘regular expression’ describes a formal language that is in fact not regular. For
efficiency, only restricted patterns can be specified. On the lexical level only nested
expressions should be evaluated. All other work is done on the parser level. Legal
patterns must not lead to any conflicts between normal and recursive processing
mode. This is guaranteed if the following two constraints are met. First, each
alternative of such a pattern may contain at most one recursively-defined identifier.
Secondly, for each such identifier a non-recursive alternative must be given. The
first set of this alternative and those of the expressions preceding and following the
use-occurrence of the identifier have to be mutually disjoint. For example,

wrong – > ″ { ″ wrong* ″ } ″
″{″;

meets only the first constraint but not the second one and is thus not a legal pattern,
whereas nested comments as in Modula-2 (see the Appendix) are legal patterns.

Control flow

Control-flow elements in ALADIN specify how the defined patterns should be
treated, and thus control the behaviour of the generated scanners. As mentioned
above, only two basic control-flow concepts are required. They are independent of
each other and of the pattern description.

A group of tokens is formed by GROUP and ENDGROUP, which surround and
name an arbitrary number of regular definitions, e.g.

GROUP res_words;
and –> ″ AND ″ ;
. . .
with –> ″ WITH ″ ;

ENDGROUP;

Recognition constraints for the group must be specified following the group’s
name, separated by commas. ALADIN uses three types of constraints: the priority,
the prefix and the context constraint.

1018 B. FISCHER, C. HAMMER AND W. STRUCKMANN

The priority constraint is used to solve lexical conflicts. Every token has a priority
level which results from the language definition. It determines which token is
returned if a lexical conflict occurs. If reserved words, for example, have a higher
priority level than identifiers, the group definition

GROUP identifiers,
PREFERRED BY res_words; – – priority constraint
id –> letter {letter, digit}*;

ENDGROUP;

will model this behaviour. Otherwise, due to the multiple-match mechanism, not all
conflicts have to be resolved and the specification of a total priority order is not
necessary. In the case of a conflict all tokens are returned which are not preferred
by any other token involved in this conflict.

Normally, multiple match implies that a token is also recognized if it occurs as a
prefix of another token which is member of another group. Sometimes this behaviour
is desired (remember, for instance, the Modula-2 example given earlier, or the
famous FORTRAN ‘D05I’ example 9), but sometimes it is not. If prefix recognition
is not desired, it can be suppressed by the prefix constraint, e.g.

GROUP res_words,
FOLLOWING all \ {letter, digit}; – – prefix constraint
and –> ″ AND ″;
. . .
with –> ″ WITH ″;

ENDGROUP;

The meaning of a prefix constraint is that a token of such a constrained group will
only be recognized if the character next to the relevant lexeme is a member of the
specified character set. This is a kind of lookahead, but owing to the restriction of
sets it is restricted to a single character. This character is either a normal source-
text character or it signals the end of the fragment. Thus, it may be considered in
each case.

The context constraint handles complex context conditions. These are conditions
that could not be checked by merely considering the next input character (as, for
example, FORTRAN’s column sensitivity). A special checking routine which is part
of the driver is required for each complex context condition. A condition that yields
false delimits the lexeme, regardless of whether the next real input character matches
or not. The only complex context condition that is currently supported by ALADIN
is the column-dependent notation as it is used in FORTRAN, e.g.

GROUP fortran_key_words,
START #7, – – context constraints
STOP #72;
. . .

ENDGROUP;

ALADIN: A SCANNER GENERATOR 1019

Token-level attributes

Besides the group-level attributes, ALADIN knows about token attributes. They
are appended to the relevant defining expression, along with a comma. The most
important token-level attributes are the result, ignore and perform attributes.

Normally, the pattern name is also the name of the token. If several alternative
patterns fit the token, the alternative operator should be used. Sometimes the
alternatives require very different policies; remember the Modula-2 example of AND
and & which both yield the same token and. Nevertheless, it is not possible to specify
a pattern

and –> ″ AND ″ I ″ & ″;

because &a first yields 〈 and, & 〉 and subsequently 〈 id, a 〉, whereas ANDa yields
only 〈 id, ANDa 〉. The result attribute changes the returned token name to the value
given in the result attribute as in the following example:

short_and –> ″ & ″, RESULT and;

Another token attribute, the ignore attribute, is required for such unpleasant
language constructs (at least from the lexical point of view) as comments or white
spaces. They are not really tokens because they should not be returned as tokens
by the scanner, but this depends on the language (consider, for instance, occam’s
indentation token) or even on the environment in which the scanner has to work,
e.g. comment management. Thus, the ignore attribute which discards the just-
recognized token and restarts the scanner can be used to manage this problem, as
the following example for ALADIN comments shows:

comment – > ″ – – ″ (all \ eol)* eol, IGNORE;

Every scanner generator is faced with the problem of what to do with patterns that
cannot be described by the normal pattern-description method, e.g. FORTRAN’s
Hollerith strings. A system claiming to be general cannot simply ignore these
exceptional patterns. The usual solution is to support special user-written routines,
but like Lex fragments this conflicts with the goal of a language-independent driver.
Moreover, the correctness of the routines depends on the user. We decided to offer
a library of handler routines to the language definer, to cover the most common
problems. These routines are a fixed part of the table driver. They can be called by
the perform attribute, e.g.

comment –> ″ – – ″, PERFORM read_end_of_line;

which has the same effect as the example above. Using library routines also makes
the generated scanners more efficient.

In addition to tokenizing, attribute evaluation is another major task for a scanner.
The scanner has to return not only the symbol or token code but also several
attributes. Almost all scanners return the lexeme (i.e. the matching source text) and
so does ALADIN.

Two other attributes that are common in handwritten scanners are not appropriate

1020 B. FISCHER, C. HAMMER AND W. STRUCKMANN

for generators. The insertion of identifiers in a symbol table requires a lot of context
information and must be done by the parser. The calculation of an internal bit-
representation depends on the hardware and should not be done by the scanner.
ALADIN supports only ‘calculations’ on a mere text-transformation level. This
normalized lexeme form is usable not only for prettyprinting purposes but also for
semantic analysis. The lexeme is transformed letter by letter, according to user-
specified substitution rules.

Other attributes for special purposes may be added if they are needed, e.g. for
the management of a lexeme pool. In contrast to other language-definition languages,
this may be done without any changes to the basic language concept.

IMPLEMENTATION ASPECTS

A complete ALADIN system consists of a generator part and a driver or table-
interpreter part. We have written a prototype in Pascal-XT, a Pascal superset, which
runs under SINIX, the Siemens version of Unix. The two parts together consist of
approximately 8000 lines of code. The implementation took about four months.

ALADIN’s front end uses standard compiler techniques and could be replaced by
any generated front-end. The scanner of the front-end is of course generated by
ALADIN itself.

The back-end of the ALADIN generator generates a non-deterministic finite
automaton (NFA) which is subsequently made deterministic (DFA). It primarily
uses the algorithms described by Aho et al. 9 with some changes for efficiency.

The generation follows the Thompson algorithm but we use a slightly different
representation of the transitions. The original algorithm asserts that each state has
exactly one terminal character transition or at most two epsilon transitions, thus
allowing a memory-saving implementation of the ‘transition lists’ in arrays. On the
other hand, this will cause character-set transitions to fan out into different states,
and thereby drastically increase the number of generated states. Thus we decided
to implement ‘real’ transition lists. A second difference is due to the extension to
non-regular patterns. A straightforward implementation would count the number of
opening and closing parentheses. But it also has to determine which counter must
be updated. Our automatic implementation uses a stack instead of several counters.
We shall describe it using the simplified example of nested comments, specified by
the definition

com –> ²{² (letter I tom)* ²}²;

First, an automaton without recursively-defined identifiers (in the above example
²{² letter* ²}²) is built using the normal routines. The final states of each subautoma-
ton (Z 1– Z 3, see Figure 1) which are uniquely determined due to the Thompson
construction will be required subsequently. The automaton for a recursively-defined
identifier is constructed as follows:

1. If its opening parenthesis is detected in the input stream, the automaton for
this identifier will be called like a subprogram. For this, the ‘returning address’
(i.e. the state from which to continue) must be pushed onto a stack. Thus, an
automaton for the opening parenthesis (here ²{²) is built. Its final state (z 4) is
marked with the action ‘push the continuation state (z l) onto the stack’.

ALADIN: A SCANNER GENERATOR 1021

2.

3.

4.

This

Figure 1. Automaton fo non-regular pattern

The ‘automaton call’ is done by an E-transition from z 4 to z 1, because z 1 is the
final state of the opening-parenthesis subautomaton of the recursively-defined
identifier.
Returning from the ‘automaton call’ means popping the continuation state off
the stack. Thus, the final state of the closing parenthesis of com, which is z 2,
is marked with the action ‘try to pop the continuation state (z l)’. If it can be
popped, the automaton enters the continuation state (z l) via an ∈ -transition.
If the stack is empty, no ‘automaton call’ has to be finished and the pattern is
complete. Thus, the token may be accepted.

scheme could easily be applied to any allowed case. It is optimal in a sense
that only the minimum amount of administration must be done. Only states 22 and
z 4 require additional actions. The largest part of the input is processed as usual.

In a final step the resulting NFA is made deterministic by means of the subset
construction. Owing to the structure of the generated NFA some modifications have
been made in order to save execution time. The subset algorithm has two inner
loops, an explicit loop which loops over all characters ch and an implicit loop which
loops over all transition lists and non-deterministic states in order to calculate
move(state, ch), the latter loop being the innermost. The average length of the
transition lists is for practical cases 5.5 entries. Hence, for most characters, running
through the lists is in vain. We switched the order of these loops so that every
transition need be considered only once. The price for this time-saving is a higher
memory demand. The transitions of a given deterministic state cannot be calculated
until any transition of the respective non-deterministic states has been considered.
Thus, all states that result from the calculation of move(state, ch) must be stored
intermediately.

Each state, even non-deterministic, may have some marks, e.g. accepting state
and token code. A deterministic state generally inherits all marks of the non-
deterministic states from which it is composed. Nevertheless, if several accepting
states are merged together, the priority constraints must be respected. Another
difficulty is that of context constraints. If states with different context constraints
(e.g. overlapping columns) were grouped together, the evaluation of the context
constraints might yield contradictory results. Thus, only groups with equivalent

1022 B. FISCHER, C. HAMMER AND W. STRUCKMANN

constraints may be considered at the same time. For most cases (i.e. format-free
languages) this will lead to a single, coherent DFA, but in some cases several distinct
DFAs may appear which must be interpreted simultaneously.

No state minimization or table compression takes place. These steps may possibly
be added in later versions of the ALADIN system.

The subset construction has the well-known exponential time complexity but this
affects—as is also well known—only some abstruse patterns. In practical cases
this algorithm is fast enough. Table I shows timings and automata sizes for some
programming languages. More than 90 per cent of the whole generation time is
spent on the subset construction. All times have been measured on a Siemens-
MX500 computer.

The performance of the generated scanners, which is commonly of more interest
than the generation time of the scanner, was measured for two languages (ALADIN
and Pascal) and a series of different source files, ranging from small (5 Kbytes)
ALADIN specifications to extensive Pascal programs up to 700 Kbytes. These
performances were compared with those of two other scanners, a straightforward
hand-coded scanner for the first version of ALADIN and a Pascal scanner, generated
by Lex. The former was implemented within a few hours without any optimization
and processes about 1700 cps (characters per second), the latter 3500–4500 cps,
depending on the source-file size. Different versions of table drivers have been
tested. The fastest version scans Pascal sources at about 3300 cps, but for smaller
sources this drops to 2600 cps. Effectively, 70–80 per cent of the Lex performance
for the same exercises is achieved. ALADIN sources are processed faster, but due
to their smaller size the highest speed was 3000 cps. This difference is caused by the
more careful lexical design of ALADIN, which reduces the fraction of characters
processed more than once from 35 per cent in Pascal to 15 per cent. Other versions
with different additional features have been tried. Table compression was simulated
by calculating the next state twice, but the performance loss was surprisingly low.
The performance dropped only by about 5 per cent. In most systems, such as Lex,
there is no correspondence between tokens and source-text positions. Maintaining
this correspondence is optional in ALADIN and causes performance loss of about
15 per cent.

The generated scanners are not as fast as those generated by special high-speed
generators such as Rex. But the performance is high enough, especially in an
incremental system where the sources to be tokenized are not very big. Further

Table I. Generator performance

ND-states Time
Language (essential) D-states required

A L A D I N 206 (136) 120 45 s
Algol68 626 (358) 294 13 min
c 637 (329) 268 12 min
Fortran 5182 (1235) 623 20 min
Modula-2 469 (290) 254 11 min
Pascal 622 (247) 212 13 min
PL/I 1694 (1188) 891 121 min

ALADIN: A SCANNER GENERATOR 1023

speeding-up could be achieved. Results by Grosch 4 show that an implementation in
C is more than 60 per cent faster than an equivalent Modula-2 implementation.
Similar results seem to be possible in our case, too.

CONCLUSIONS

We have demonstrated that a scanner that is required to work within an incremental
environment has to fulfil some additional requirements. These requirements, which
include controlled behaviour in the absence of necessary context, influence the
corresponding scanner generator. We have presented the ALADIN system, which
avoids this problem by the multiple-match rule. An ALADIN-generated scanner is
able to deliver more than a single token if required or if a unique determination is
impossible due to the lack of context. This behaviour can be controlled by the
scanner specification. Even a specification according to the traditional longest-match
rule is possible.

Beyond this special purpose, we believe that ALADIN as a method of description
for lexical analysers has several advantages over existing systems. The language-
definition language itself is compact and self-contained, and thus easy to understand.
It relies on only two basic principles, grouping and attributing, which can be com-
bined arbitrarily. The behaviour of the generated scanner is specified explicitly and
does not result from any complicated interpretation of the specification, not even
from the order of the definitions. The pattern description is specified uniformly
using regular expressions with a consistent extension for some non-regular patterns.
Finally, the scanners can be generated fully and do not need any manually-
implemented semantic actions. Hence, ALADIN specifications are more abstract
than specifications written in other languages.

ACKNOWLEDGEMENTS

The authors would like to thank the referees for their valuable comments on an
earlier version of this paper.

APPENDIX

LEXIS; – – Modula-2

—— character set definitions

letter –> { ″ a ″, ″ b ″, ″ c ″, ″ d ″, ″ e ″, ″ f ″, ″ g ″, ″ h ″, ″ i ″, ″ j ″,
″ k ″, ″ l ″, ″ m ″, ″ n ″, ″ o ″, ″ p ″, ″ q ″, ″ r ″, ″ s ″, ″ t ″,
″ u ″, ″ v ″, ″ w ″, ″ x ″, ″ y ″, ″ z ″,
″ A ″, ″ B ″, ″ C ″, ″ D ″, ″ E ″, ″ F ″, ″ G ″, ″ H ″, ″ l ″, ″ J ″,
″ K ″, ″ L ″, ″ M ″, ″ N ″, ″ O ″, ″ P ″, ″ Q ″, ″ R ″, ″ S ″, ″ T ″,
″ U ″, ″ V ″, ″ W ″, ″ X ″, ″ T ″, ″ Z ″ };

oct_digit –> {″ 0 ″, ″ 1 ″, ″ 2 ″, ″ 3 ″, ″ 4 ″, ″ 5 ″, ″ 6 ″, ″ 7 ″};
digit –> {oct_digit, ″ 8 ″, ″ 9 ″ };
hex_digit –> {digit, ″ A ″, ″ B ″, ″ C ″, ″ D ″, ″ E ″, ″ F ″ };

ws_char –> {bol, eol, tab, ″ ″ }; – – white spaces

1024 B. FISCHER, C. HAMMER AND W. STRUCKMANN

asterisk –> ″∗″ ;
s_quote –> ″ ′ ″ ;

_ – auxiliary definitions

inner–corn –> all \ {asterisk, right_par} right_par* asterisk+;
signed_int –> {plus, minus}? digit+;

GROUP white_spaces;
comment –> ″ (* ″ right_par* (inner_com comment)* ″ *) ″, IGNORE;
ws –> ws_char+, IGNORE;

ENDGROUP; – – white_spaces;

GROUP reserved_words,
FOLLOWING all \ {letter, digit};
and –> ″ AND ″;
. . .
with –> ″ WITH ″ ;

ENDGROUP; – – reserved_words

GROUP delimiters;
equal
not_eq
greater
greater_eq
less
Iess_eq

short_and
short_not

plus
minus
times
divide

assign_op
deref_op

left_par
right_par
Ieft_sqb
right_sqb
left_bra
right–bra

dot
comma
semicolon
colon
dot_dot
bar

ENDGROUP;

–> ″ =″;

–> ″ # ″ ″<>″;
–> ″ > ″ ;
–> ″ > = ″ ;
–> ″ < ″ ;
–> ″ < = ;

–> ″ & ″, RESULT and;
–> ″ − ″ RESULT not;
–> ″ + ″ ;

–> ″ − ″ ;
–> ″∗″ ;
–> ″/″;

–> ″ : = ″ ;
–> ″ ˆ ″;
–> ″ (″;
–> ″)″ ;
–> ″[″ ;
–> ″]″ ;

–> ″ { ″ ;
–> ″ } ″ ;
–> ″ . ″ ;
–> “ , ” ;
–> ″ ; ″ ;
–> ″ : ″ ;
–> ″ . . ″ ;
–> ″″;

– – delimiters

ALADIN: A SCANNER GENERATOR 1025

GROUP identifier,
PREFERRED BY reserved_words;
id –> letter {letter, digit}*;

ENDGROUP; – – identifier

GROUP integer_literals;
integer –> digit+;
oct_int –> oct_digit+ ″ B ″;
oct_char –> oct_digit+ ″ C ″;
hex_int –> digit hex_digit* ″ H ″;

ENDGROUP; – – integer_literals

GROUP other_literals;
real –> digit+ dot digit* (″ E ″ signed_ int)?;
string –> quotes (all \ {quotes, eel})* quotes

I s_quote (all \ {s_quote, eel})* s_quote;
ENDGROUP; – – other_literals

ENDLEXIS; – – Modula-2

REFERENCES

1. W. L. Johnson, J. H. Porter, S. J. Ackley and D. T. Ross, ‘Automatic generation of efficient
lexical processors using finite state techniques’, Comm. of the ACM, 12, 805–813 (1968).

2. M. E. Lesk, ‘Lex–a lexical analyzer generator’, Science Technical Report 39, AT&T Bell Laborator-
ies, Murray Hill, N. J., 1975.

3. V. Paxson, Flex—Manual Pages, Public Domain Software, 1988.
4. J. Grosch, ‘Efficient generation of lexical analyzers’, Software—Practice and Experience, 19,

1089–1103 (1989).
5. C. Genillard and A. Strohmeier, ‘GRAMOL—a grammar description language for lexical and

syntactical parsers’, SIGPLAN Notices, 23, 103–122 (1988).
6. P. Schnoorf, ‘Dynamic instantiation and configuration of functionally extended, efficient lexical

analyzers’, SZGPLAN Notices, 23, 93–102 (1988).
7. H. Mossenbock, ‘Alex—a simple and efficient scanner generator’, SIGPLAN Notices, 21, 139–148

(1986).
8. N. Wirth, Programming in Modula-2, 3rd, corrected edition, Springer, Berlin, 1985.
9. A. V. Aho, R. Sethi and J. D. Unman, Compilers: Principles, Techniques and Tools, Addison

Wesley, Reading, MA., 1986.
10. R. Bahlke and G. Snelting, ‘The PSG system: from formal language definitions to interactive

programming environments’, ACM Trans. Programming Languages and Systems, 4, 547–576 (1986).
11. Language Definer’s Guide to PSG, Report PI-R6/88, Technische Hochschule Darmstadt, Darm-

stadt, 1988.
12. B. Fischer, ‘Design und Implementierung eines Scanner-Generators im Rahmen des PSGII-Projek-

tes’, Diplomarbeit, Technische Universitat Braunschweig, Braunschweig, 1990.
13. G. Goos and J. Hartmanis (eds), The Programming Language Ada Reference Manual, ANSI/MIL-

STD-1815A-1983, Lecture Notes in Computer Science, 155, Springer, Berlin, 1983.
14. K. Jensen, and N. Wirth, Pascal User Manual and Report, 3rd edn, Springer, New York, 1985.

	ALADIN: A Scanner Generator for Incremental Programming Environments
	SUMMARY
	INTRODUCTION
	PROBLEMS IN CURRENT SYSTEMS
	Requirements due to an incremental compiler
	Requirements due to the structure of programming languages
	How not to do scanner generators and why not

	SOLUTIONS IN ALADIN
	STRUCTURE OF THE LANGUAGE
	Lexical elements of ALADIN
	Pattern description
	Control flow
	Token-1evel attributes

	IMPLEMENTATION ASPECTS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	APPENDIX
	REFERENCES

