
High-Precision Retrieval for High-Quality Software

B. Fischer, M. Kievernagel and W. Struckmann

Abteilung f�ur Softwaretechnologie

TU Braunschweig

Gau�stra�e 17

D-38092 Braunschweig, Germany

Tel. +49 531 3917579

Fax +49 531 3918111

ffisch,mkiever,struckg@ips.cs.tu-bs.de

Abstract. In this paper we present VCR, a high-precision retrieval tool

which helps programmers to locate software components which exactly

match their needs. It employs implicit VDM speci�cations as search

keys and is thus especially well-suited for a formal software development

process based on VDM's specify-re�ne-implement paradigm. VCR is

designed as a �lter-inspector-chain which is user-con�gurable through a

graphical user interface. The �lters realize deduction-based search meth-

ods such as signature matchers, model checkers, and theorem provers.

The inspectors maintain links between subsequent �lters and thus allow

examination and reuse of intermediate retrieval results. First experi-

ments demonstrate the feasibility of our approach.

1. Introduction

Formal methods are often believed to be the \one true way" towards the con-

struction of high-quality software. Their application, however, is surrounded

by some myths (Hall, 1990; Bowen and Hinchey, 1995) and industrial usage of

formal methods does not live up the initial expectations (Bowen and Stavri-

dou, 1993; Craigen et al., 1993; Weber-Wul�, 1993; Hussmann, 1995). Hence,

high-quality software remains an exception.

This unpleasant situation may be overcome or moderated if approved (i. e. spec-

i�ed or even veri�ed) software components can be reused. But then adapting

the retrieved components to the exact needs of the user remains an error-prone

1

step and may harm the reliability of the resulting system. Consequently, the

reuse approach to high-quality software requires high-precision retrieval meth-

ods which only �nd \plug-compatible" components.

As this approach relies on large component libraries tool support is inevitable.

Unfortunately, most classical retrieval methods (Prieto-Diaz, 1987; Maarek

et al., 1991) are based on an informal and external keyword classi�cation scheme

and are thus not applicable.

In this paper we will present the deduction-based retrieval tool VCR (VDM-

based software Component Retrieval). It has been developed in the NORA-

HAMMR-project, which in turn is part of the inference-based software devel-

opment environment NORA (Snelting et al., 1994; Krone and Snelting, 1994).

VCR is a high-precision retrieval tool which exploits exact semantic informa-

tion intrinsic to the components. From a user's point of view it o�ers three

main features:

� a graphical interface,

� a con�gurable �lter-inspector-chain,

� and incremental strengthening of queries.

The graphical interface shields the user completely against the applied deduc-

tion methods. No special knowledge but only experience in the applied im-

plementation language and VDM is required to use VCR. The �lter-inspector-

chain architecture guarantees that results of acceptable precision are avail-

able su�ciently fast and thus avoids the bottleneck of insu�cient deduction

power. Hence, VCR overcomes the two main reasons for the failure of earlier

approaches to deduction-based retrieval (Rollins and Wing, 1991; Manhart and

Meggendorfer, 1991).

2. Deduction-Based Component Retrieval

The basic idea of deduction-based software component retrieval is simple:

� a component is characterized by its signature which can be computed

using type inference techniques (Damas and Milner, 1982) and its speci-

�cation which must be given in the form of pre- and postconditions,

� search keys also consist of a (sig; pre; post)-triple,

� a component matches if it has a provable \compatible" signature and

speci�cation.

A realization of this idea requires the selection of a speci�cation language and

precise de�nitions of compatibility.

2

In VCR (cf. �gure 1) we decided to use a library of Modula-2 procedures

(Lins, 1989) which have been speci�ed as VDM operations|this avoids cryptic

theorem prover formalisms.

Figure 1 - Retrieval concept

Signature matching

Specification matching

Type signature

VDM specification

type(k) =?
E type(c)

pre(c)

post(k)

=>?

=>?post(c)

pre(k)

type(k)

pre(k), post(k)

Search key k

pre(k)
V

Component library C
for each c in C:
type(c), pre(c), post(c)

Plug−compatible components

Compatibility of signatures is de�ned via an equivalence E and checked by

E-uni�cation (cf. section 3.) Signature terms consist essentially of Modula-2

type de�nitions extended by type variables to abstract the concrete naming of

types.

A component's speci�cation is compatible with that of a search key if it simul-

taneously contains a weaker precondition and a stronger postcondition. Thus,

the proof obligations pre(k)) pre(c) and pre(k) ^ post(c)) post(k) must be

valid. The special form of the second condition additionally allows to match

components realizing a less partial function than the key.

An implementation of speci�cation matching obviously requires some kind of

automatic proof procedure. The undecidability of the proof problem and the

complexity and relative weakness of existing theorem provers make it impossible

to take a brute-force approach.

Our approach is to split speci�cation matching into simpler steps, each one

realized as an independent �lter. Hence, VCR is designed as a chain of compo-

nent �lters. This also allows free combination of di�erent retrieval methods|

including text-based methods. Moreover, since intermediate results can be

inspected at every stage, the overall running time is not critical to the perfor-

mance of the tool.

3

Figure 2 - Graphical user interface

The idea of successive �ltering is re
ected in the �lter chain located in the

center of our graphical user interface (see �gure 2). Additionally, inspectors

grant easy access to intermediate results. This �lter-inspector-chain may easily

be customized by the user through an icon pad. The con�guration displayed

contains the �lters described in this paper and has also been used in the ex-

periments.

The inspectors maintain their own windows to display the components retrieved

by the �lters they are attached to. They allow to access the VDM de�nition

and the Modula-2 code of the components. All intermediate sets of components

or modules can be selected and used in subsequent retrieval runs with di�erent

keys. So a VCR user can start out with stating only weak conditions in the

key, which can then be strengthened incrementally as long as the results remain

too unprecise. Additionally, selecting the module set of an intermediate result

allows to search for typical combinations of procedures (e. g. push and pop.)

3. Signature Matching and Component Transformation

The goal of signature matching is to �nd components with appropriate calling

conventions whatever choices in their implementation have been made. Thus

the type equivalence E should abstract the choices a language o�ers. The

4

equivalence used in VCR is based on Rittri's work in the context of functional

languages (Rittri, 1990) and handles the following features of Modula-2:

� Naming of types.

� Ordering of lists (e.g. parameters and record �elds.)

� Return result as VAR-parameter or as function result.

The implementation is based on order-sorted AC1-uni�cation. The resulting

substitution is necessary to identify corresponding names in the speci�cations

and consequently to build the proof obligation. It also describes a type transfor-

mation from a matched component to the key, which can be used to transform

the component automatically into a form exactly �tting the environment of the

key.

Let us consider for example the search key:

PROCEDURE x(i:I, s:S) : S

pre true

post s = tl x and i = hd x

VCR matches the procedure Push using the result currying axiom

PROCEDURE p(x, VAR y:Y) = PROCEDURE p(x, y:Y) : Y

and commutativity of parameters. The result of this transformation is shown

in �gure 3:

Figure 3 - Component transformation

PROCEDURE Push

(VAR st:Stack; it:Item);

BEGIN

.

.

.

WITH st^ DO

.

.

.

END

.

.

.

END Push;

PROCEDURE Push'

(it:I; st:S) : S;

VAR t : S;

BEGIN

.

.

.

WITH t^ DO

.

.

.

END

.

.

.

RETURN t;

END Push';

Precautions have to be taken to handle every possible exit from a procedure

when a VAR-parameter is transformed into a function result.

5

4. Speci�cation Matching

In this section we will explain how VCR checks a speci�cation against the

�ltered library components. We decided not to hard-wire a special proof pro-

cedure for VDM but to integrate the general purpose theorem prover OTTER

(McCune, 1994b) and the associated model �nder anldp (McCune, 1994a).

OTTER is based on the resolution principle and can handle formulas of the

non-sorted �rst order fragment of predicate calculus with equality.

As already mentioned speci�cation matching is currently implemented by two

�lters, a simple model checker and the actual application of the theorem prover.

The model checker purges obligations which can easily be refuted by testing

their validity in a small fragment of the VDM-axiomatization. Obviously, this

is a prerequisite for the obligations to be provable in the full theory. The basic

idea is to check whether all variable assignments ranging over a �nite domain

evaluate the obligations to true. We have experimented with di�erent models

and have obtained good results using a �nite model only containing the objects

nul and one = suc(nul) as integers, nil and lnul = cons(nul,nil) as lists

and inc denoting illegal terms.

The �lter thus extends each obligation by an axiom set for integers and lists

which has exactly this �nite model. anldp then tries to �nd the designated

model using a modi�ed �rst-order Davis-Putnam procedure (i. e. enumeration

of all �nite models.) If this fails the component is rejected. Otherwise, the

validity in the full theory still has to be tested.

The last �lter creates a problem description for OTTER and the full theory.

First the problems are split into independent subproblems in order to reduce

the search space. A further reduction of the search space is achieved by dynam-

ically linking each problem with an appropriate set of axioms. The complete

axiomatization consists of about 120 axioms and lemmata and is based on

(Bicarregui et al., 1993) for sequences and on our earlier work in automatic

program veri�cation (Kievernagel, 1990; Hohlfeld and Struckmann, 1992) for

arithmetic. The problems presented in this paper needed up to 25 axioms from

this set.

Finally, OTTER is run on the generated problems and its output is analyzed.

The matched components|�nal or intermediate results|are represented by

their location (module) and their name.

5. Results and Conclusions

The experiments reported here are based on about half of Lins' library. We

have speci�ed all list-like structures from singly-linked lists to priority queues

6

and deques and the basic set-like data types set and bag. All speci�cations are

based on the structure of the Modula-2 implementation. We represent singly-

linked structures and arrays as VDM-sequences. The elementary types and the

other structured types are represented in VDM by their nearest counterpart.

The following table displays the �ltering e�ect of the three phases of VCR. The

left column gives a short description of the search key. The columns for the

type matcher and the model checker give counts for the successfully matched

procedures and the modules in which these are contained. The last column

gives the results of the respective OTTER runs which are either a successful

proof (runtime in seconds

1

) or there was no proof within a short time limit for

a valid proof obligation (np+) resp. an invalid proof obligation (np-).

Table 1 - Retrieval experiments

description sig. match model check OTTER

1 Insert at head of seq. 25=14 7=4 4� 2s=3� np-

2 Seq. split at element 1=1 | np+ (48s)

3 Seq. split at position 1=1 1=1 1s

4 Member?-predicate 3=3 3=3 3� np+

5 Position of element in seq. 9=9 9=9 9� 1s

6 Remove from front of seq. 51=20 6=3 6� 2s

7 Remove from back of seq. 51=20 6=3 6� np-

Except for OTTER, there are no runtimes included in this table because some

syntax transformations and parts of the process control are not yet fully au-

tomated. However, the signature matching �lter takes about 2{3 seconds for

the whole library depending on the generality of the type key and the num-

ber of matching components. The model checker takes about 2{4 seconds per

proof obligation varying with their complexity. This time could be drastically

reduced by a specialized program because anldp needs 1.75 seconds to �nd the

intended model from the axioms of the small theory alone.

Finally, we want to comment on the adequacy of the found procedures. The

following table gives the classical retrieval measures of recall (R = retrieved

relevant components / all relevant components) and precision (P = retrieved

relevant components / all retrieved components) for the experiments at each

�lter (average-2 is computed only from non-empty results.)

1

All times were measured on a SPARC ELC-10.

7

Table 2 - Recall and precision

problem sig. match model check OTTER best �lter

R P R P R P R P

1 0:67 0:16 0:67 0:57 0:67 1 0:67 1

2 1 1 0 � 0 � 1 1

3 1 1 1 1 1 1 1 1

4 1 1 1 1 0 � 1 1

5 1 1 1 1 1 1 1 1

6 0:75 0:12 0:75 1 0:75 1 0:75 1

7 0 0 0 0 0 � 0 0

average 0:77 0:61 0:63 0:65 0:49 0:57 0:77 0:86

average-2 0:90 0:71 0:88 0:91 0:85 1 0:90 1

Even when signature matching produced a result of low precision the remaining

�lters increased the precision to a very high level. And for two-thirds of the

experiments VCR succeeded in proving that the retrieved components are in

fact plug-compatible. The computational e�ort, however, is high. But due to

the concept of successive �lters, VCR is able to present acceptable intermediate

results in short time.

The experiments demonstrate VCR's ability to locate software components via

matching of implicit VDM speci�cations. Once its integration is completed it

will be a viable high-precision retrieval tool to support the reuse approach to

high-quality software.

Acknowledgements

G. Snelting originally proposed the idea of NORA/HAMMR. C. Lindig de-

signed parts of the user interface, J. Rhiemeier implemented the VDM-SL

parser, P. Heise and C. v. Grone speci�ed parts of Lins' library, and E. Gode

implemented the �rst version of the signature matching. M. Kievernagel and

B. Fischer were supported by DFG, grants Sn11/1-2 and Sn11/2-2.

6. References

Bicarregui, J. C., Fitzgerald, J. S., Lindsay, P. A., Moore, R. and Ritchie, B.

1993. Proof in VDM: A Practitioner's Guide, FACIT series, Berlin: Springer-

Verlag.

Bowen, J. P. and Hinchey, M. G. 1995. Seven more myths of formal methods,

Technical Report TR-357, Computer Laboratory, University of Oxford.

Bowen, J. P. and Stavridou, V. 1993. The industrial take-up of formal methods

in safety-critical and other areas: A perspektive. In FME 1993. LNCS 670,

Berlin: Springer-Verlag. 183{195.

8

Craigen, D., Gerhart, S. and Ralston, T. 1993. Formal methods reality check:

Industrial usage. In FME 1993. LNCS 670, Berlin: Springer-Verlag. 250{267.

Damas, L. and Milner, R. 1982. Principle type-schemes for functional pro-

grams. Proc. 9th Annual ACM Symposium on Principles of Programming Lan-

guages. ACM Press. 207{212.

Hall, J. A. 1990. Seven myths of formal methods. IEEE Software. 7(5): 11{

19.

Hohlfeld, B. and Struckmann, W. 1992. Einf�uhrung in die Programmveri�ka-

tion, Reihe Informatik, Mannheim: BI Wissenschaftsverlag.

Hussmann, H. 1995. Indirect use of formal methods in software engineering.

In Wirsing, M. (ed.), Proc. ICSE-17 Workshop on Formal Methods Application

in Software Engineering Practice. 126{133.

Kievernagel, M. 1990. Auswahl und Installation eines Beweissystems. Master's

thesis. Braunschweig: Technical University of Braunschweig, Germany.

Krone, M. and Snelting, G. 1994. On the inference of con�guration structures

from source code. Proc. 16th International Conference on Software Engineer-

ing. IEEE Computer Society Press. 49{57.

Lins, C. 1989. The Modula-2 Software Component Library, Springer Compass

International, New York: Springer-Verlag.

Maarek, Y. S., Berry, D. M. and Kaiser, G. E. 1991. An information retrieval

approach for automatically constructing software libraries. IEEE Transactions

on Software Engineering. SE-17(8): 800{813.

Manhart, P. and Meggendorfer, S. 1991. A knowledge and deduction based

software retrieval tool. Proc. 4th International Symposium on Arti�cial Intel-

ligence. 29{36.

McCune, W. W. 1994a. A Davis-Putnam program and its application to �nite

�rst-order model search: Quasigroup existence problems. Technical report. Ar-

gonne: Argonne National Laboratory.

McCune, W. W. 1994b. Otter 3.0 user's guide. Technical Report ANL-94/6.

Argonne: Argonne National Laboratory.

Prieto-Diaz, R. 1987. Classifying software for reusability. IEEE Software.

4(1): 6{16.

Rittri, M. 1990. Retrieving library identi�ers via equational matching of types.

In Stickel, M.E. (ed.), Proc. 10th International Conference on Automated De-

duction. LNCS 449. Berlin: Springer-Verlag.

Rollins, E. J. and Wing, J. M. 1991. Speci�cations as search keys for software

libraries. In Furukawa, K. (ed.), Proc. of the Eighth International Conference

and Symposium on Logic Programming. Paris: MIT Press. 173{187.

Snelting, G., Fischer, B., Grosch, F.-J., Kievernagel, M. and Zeller, A. 1994.

Die inferenzbasierte Softwareentwicklungsumgebung NORA. Informatik|For-

schung und Entwicklung 9(3): 116{131.

Weber-Wul�, D. 1993. Selling formal methods to industry. In FME 1993.

LNCS 670, Berlin: Springer-Verlag. 671{678.

Woodcock, J. C. P. and Larsen, P. G. 1993. Proc. FME'93: Industrial-Strength

Formal Methods. LNCS 670, Berlin: Springer-Verlag.

9

