Int J Softw Tools Technol Transfer (2014) 16:519-529
DOI 10.1007/s10009-014-0335-0

RERS

Applying symbolic bounded model checking to the 2012 RERS

greybox challenge

Jeremy Morse - Lucas Cordeiro - Denis Nicole -

Bernd Fischer

Published online: 1 August 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We describe the application of ESBMC, a sym-
bolic bounded model checker for C programs, to the 2012
RERS greybox challenge. We checked the reachability prop-
erties via reachability of the error labels, and the behavioral
properties via a bounded LTL model checking approach. Our
approach could solve about 700 properties for the small and
medium problems from the offline phase, and scored overall
about 5,000 marks but still ranked last in the competition.

Keywords Program verification - Symbolic bounded
model checking - Verification competition

1 Introduction

Model checking has been used successfully to verify abstract
system designs as well as actual software; applying it to the
RERS greybox challenge is thus an obvious idea. Model
checking comes in a variety of different techniques, but we

J. Morse

Department of Computer Science, University of Bristol,
Bristol, UK

e-mail: jeremy.morse @bristol.ac.uk

L. Cordeiro

Electronic and Information Research Center, Federal University
of Amazonas, Manaus, Brazil

e-mail: lucascordeiro@ufam.edu.br

D. Nicole

Electronics and Computer Science, University of Southampton,
Southampton, UK

e-mail: dan@ecs.soton.ac.uk

B. Fischer (<)

Division of Computer Science, Stellenbosch University,
Stellenbosch, South Africa

e-mail: bfischer@cs.sun.ac.za

use symbolic bounded software model checking, as imple-
mented by our ESBMC model checker [8,9]. That is,

— We analyze the challenge programs directly (specifically,
the C versions), not an abstract model that has been
extracted separately;

— We (arbitrarily) bound the number of iterations of the
main loop that we analyze and unroll the program accord-
ingly;

— We generate a number of verification conditions (VCs)
from the unrolled program, which we pass to a satisfia-
bility modulo theories (SMT) solver, instead of explic-
itly exploring the reachable state space of the original
program.

We use this approach both for the reachability properties
(in the usual way via checking the reachability of the error
labels) and the behavioral properties (via our bounded LTL
model checking approach [17,18]). However, it seems to be
clear that symbolic bounded software model checking is not
the optimal technique for the challenge: the programs imple-
ment finite state machines with a relatively small state space,
but bounding and unrolling under-approximates the reach-
able state space while at the same time the structure of the
VCs over-approximates it. Similarly, the programs are much
simpler than those typically encountered in software model
checking (e.g., the offline problems only use integer equal-
ity and contain no other operations or data structures) while
at the same time the large programs (approximately 70,000—
180,000 lines of code) are too large to unroll them sufficiently
often.

We only participated in the offline phase of the Challenge,
and only attempted the small and medium problems (i.e.,
Probleml to Problem6). As expected, we did thus not
score well, and came last in the competition, with a total

@ Springer

520

J. Morse et al.

score of 5,061 marks. However, our main motivation for par-
ticipating in the Challenge was to evaluate our bounded LTL
model checking approach over a large, external benchmark
set. Here, we fared well on the four problems we attempted:
we correctly analyzed 385 out of the 400 properties, and
scored close to 3,000 marks on these properties alone.

The remainder of this paper is organized as follows: In
the next section we briefly describe the applied tools and
the challenge problems. In Sects. 3 and 4 we give details of
our approach to solving the reachability problems and the
behavioral problems, respectively. The complete results are
given in the appendix.

2 Experimental set-up
2.1 ESBMC

ESBMC is a context-bounded symbolic model checker that
allows the verification of single- and multi-threaded C code
with shared variables and locks. ESBMC supports full ANSI-
C (as defined in ISO/IEC 9899:1990), and can verify pro-
grams that make use of bit-level operations, arrays, point-
ers, structures, unions, memory allocation and floating-point
arithmetic. It can reason about arithmetic under- and over-
flows, pointer safety, memory leaks, array bounds violations,
atomicity and order violations, local and global deadlocks,
data races, and user-specified assertions, although none of
ESBMC’s built-in checks are useful for the Challenge.

As a bounded model checker ESBMC checks (the nega-
tion of) a given property at a given depth: given a program, a
property ¢, and a bound k&, BMC unrolls the program k times
and translates it into a VC i such that ¢ is satisfiable if and
only if ¢ has a counterexample of length less than or equal
to k. ESBMC uses a modified CBMC [6] frontend to unroll
the program, to convert it into static single assignment (SSA)
form, and to generate the VC(s), but it uses different back-
ground theories and passes them to an SMT solver, rather
than a pure satisfiability (SAT) solver. ESBMC natively sup-
ports Z3 [11] and Boolector [4] but can also output the VCs
using the SMTLib format. However, due to the simple struc-
ture of the challenge programs (see Sect. 2.3) the use of SMT
solvers is of little advantage over plain propositional satisfi-
ability solvers. For the Challenge we used ESBMC 1.21.1,
which is available from www . esbmc . org.

2.2 Bounded LTL model checking

We have also extended (see [18] for details) context-bounded
model checking to validate multi-threaded C programs
directly against linear-time temporal logic (LTL) formulae
over expressions in the global variables of the C program
under test. The key problem here is that a bounded model

@ Springer

checker only explores finite prefixes of any possibly infi-
nite traces produced by the program, while the LTL standard
semantics is defined over infinite traces. We cannot simply
cut the traces because the standard interpretation of the next-
operator X requires the existence of a next state to hold. One
possible approach is to systematically extend the finite traces,
e.g., by infinite stuttering of their last state [15]. However, in
a two-state logic, we cannot then distinguish between a for-
mula that (truly) holds because we have seen a good prefix
[14] and so all possible infinite continuations of the observed
finite trace will be models as well, and one that (presumably)
holds because we have merely not seen a bad prefix (i.e., a
finite trace that cannot be prefix of a model) because we stut-
ter the final state infinitely often. In order to achieve this dis-
tinction, we need to use a larger truth domain. Our extension
is based on a four-valued domain which uses two additional
truth values to interpret inconclusive (i.e., neither good nor
bad) prefixes [3].

Formally, we consider the set of atomic propositions Prop
over the global variables of the C program and define ¥ =
2Prop We use u € T* to denote finite traces, w € T® to
denote infinite traces, and a® € X to denote the infinite
trace consisting of the letter € ¥ only. We can define the
standard semantics of LTL [19] formulas via an interpretation
function [_ = _], : ¢ x LTL — By, where B, = {L, T}
is the standard truth domain. We call w € X£“ a model of ¢
iff [w = ¢lo, = T and also say that w satisfies ¢, or that ¢
holds for w. Finite traces can be extended systematically by
infinite stuttering of their last state [15] to extend the standard
semantics to finite traces, i.e., [u = ¢loo = [uu;_; = ¢lo
for a finite trace u of length n. However, this so-called the
infinite extension semantics [2] cannot handle inconclusive
prefixes properly, as sketched above. In order to achieve this,
we introduce the larger truth domain B4 = {L, 1P, T?, T},
with L © 1P C TP C T [3], and then use the infinite
extension semantics to resolve the inconclusive prefixes into
presumably good (i.e., T?) or presumably bad (i.e., L7).
This bounded trace semantics is thus given by

[u = ¢l
T iff Ywe Z2° - [uw =¢l,=T
TP ff [uuy_ | Eelo=T AFw e X [uw E=¢ly, =1
L7 i [uul | Eelo=LlATwe X [uw =¢l, =T
1L iff Ywe Z¢ [uw =¢l, =1

for a finite trace u € X* of length n > 0 and an LTL formula
®.

In our case, all traces 7 (P) of a program P are guar-
anteed to be non-empty, because all global variables have
defined initial values, which then form the initial state. We
extend the interpretation to sets of traces by taking the meet
over all elements, i.e., [U = ¢]p = Myevlu = ¢]p and say
that ¢ holds (resp. presumably holds) for a C program P if

Applying symbolic bounded model checking

521

[T(P) = ¢l = T (resp. T?). Finally, we call P good (resp.
succeeding, failing, or bad) wrt. ¢ if [T7(P) Eg¢lp = T
(resp. T?, L7, or L). Note that our semantics is slightly dif-
ferent from the RV-LTL semantics [3], which also uses B4
as semantic domain but then uses a finite trace semantics to
resolve ugly prefixes. An executable four-valued semantics
has also been used as foundation for runtime monitoring of
both future time [16] and past time [5] LTL properties.

The usual approach [7,13] to check LTL formulas con-
verts their negation (the so-called never claim) into a non-
deterministic Biichi automaton (BA), which is composed
with the program; if the composed system admits an accept-
ing run, the program violates the specified requirement. How-
ever, in order to implement the bounded trace semantics, we
need to modify the approach. We thus first pre-compute a
complete static analysis to determine which states are accept-
ing under the different infinite extensions of the observed
finite traces. This is feasible due to the relatively small size
of the BAs produced by the 1t 12ba [12] algorithm and tool!
(which we modified to produce C code). We then check the
combined system several times, with different assertions cor-
responding to the different acceptance criteria, based on dif-
ferent infinite extensions of the observed traces, to derive the
correct truth value for the LTL. For each of these assertions
our model-checker searches for a witness which violates the
assertion; our program’s overall “correctness” value is the
weakest such value in B4 for which a witness can be found
that violates the corresponding assertion.

2.3 Challenge problems

The challenge problems (see [21] for more details) are all so-
called event-condition-action systems, which are finite state
transducers where the states are not given explicitly, but only
implicitly by the possible valuations of a number of state vari-
ables. The implementations consist of a main loop, which in
each iteration reads an input (i.e., event) from the standard
input, updates the state variables, and possibly writes an out-
put (i.e., action) to the standard output; the latter two are
guarded by conditionals over the input, and over the values
of the state variables.

The challenge problems all work with relatively small
alphabets, and use five or (in most cases) six different input
symbols, and between three and nine different output sym-
bols. Easy and moderate problems have between four and
eight state variables, while large problems have 30. The
offline problems (Probleml to Problem9) have a much
simpler structure than either the validation or the online prob-
lems. The programs for the offline problems only assign
between two and five different integer constants to the state
variables, and only use the equality and propositional oper-

I With further improvements by Babiak et al. [1].

ators in the guards. In contrast, the remaining programs
(Probleml0 to Probleml9) use arithmetic operators to
update the state variables (but from their old values only, i.e.,
the new value does not depend on any of the other variables),
and use the other operators in the guards.

The classification of the problems as easy, moderate, or
hard remains opaque to us, although all three hard prob-
lems have substantially more state variables. However, from
a bounded model checking point of view the primary issue is
the length of the shortest counterexample traces for the reach-
ability properties, as this determines the necessary unwinding
bounds.” In this view, at least some of the offline problems
seem to be mis-classified. For the simple problems all reach-
able error labels require three to seven loop iterations, but the
(supposedly) easy medium problem (Problem4) requires
17-21 loop iterations, while the moderate (Problem5) and
hard (Problem6) versions require only eight and six itera-
tions, respectively.

We only participated in the offline phase of the Challenge,
and only attempted the small and medium problems (i.e.,
Probleml to Problem6); thelarge problems (Problem?
to Problem9) are too large and broke our frontend. For
the behavioral properties we only attempted Probleml
to Problem4. We ran ESBMC on the C versions of the
Challenge programs; the only modifications were to replace
the input (scanf) by an appropriately constrained non-
deterministic choice, and to prune (by means of an assump-
tion on the computed output) executions that use invalid
inputs.

2.4 Execution of experiments

We ran all experiments on the Southampton IRIDIS com-
pute cluster, which comprises about 1,000 nodes, each with
12 2.4 Ghz Intel Westmere cores and 22 Gb of memory, run-
ning Red Hat Enterprise Linux Server release 5.3 (Tikanga).
We submitted batches of 60 jobs, which were scheduled by
IRIDIS’ own job scheduling system. We set no time or mem-
ory limits for the jobs corresponding to the reachability prop-
erties, and a time limit of 1 h (but no memory limit) for the
jobs corresponding to the behavioral properties.

3 Checking the reachability properties

3.1 Approach

The very simple structure of the programs (i.e., no arithmetic,
array, or memory operations) means that we only need to

check the reachability of the explicit error labels to solve the

2 Note that the internal program structure still plays a role: for the same
unwinding bound the hard problems take one to two orders of magnitude
longer than the easy or moderate ones; see Table 1 for details.

@ Springer

522

J. Morse et al.

reachability problems. Since ESBMC supports error labels,
this is straightforward; for each label 1ab, we called ESBMC
as follows (with unwind bound n dependent on the problem
category):

esbmc - -no-assertions - -unwindn
- -no-unwinding-assertions

- —error-label labproblem.c

We ran ESBMC for each label separately, although this
requires repeated unrolling and conversion of the same pro-
gram; we suspect that we could improve our overall perfor-
mance substantially if we checked for all labels in one batch
(e.g., using Z3’s context stack mechanism).

Table 1 summarizes the results.

3.2 Small problems

The relatively small size of these programs (approximately
600-1,600 lines of code) allowed us to unroll them quite
aggressively. We iteratively deepened the unrolling bound
until the results stabilized at n = 7 and then used a larger
bound to double-check the results. For the easy and moderate
programs (Probleml and Problem2) we were able to run
ESBMC with n = 50, but the hard program (Problem3)
produced larger and harder VCs requiring substantially
longer SMT solver times, so we only used n = 20 here.

For the labels identified as reachable, ESBMC produces a
counterexample trace, as usual in bounded model checking,
from which a test input could be extracted; due to the simple
structure of the challenge programs, we did not execute these
inputs, but simply assumed them to be true counterexamples.
We associated the maximum weighting of 9 marks with each
of these labels.

For the other labels we interpreted the failure to reach this
label within the given bound as sufficient evidence that it
is indeed unreachable. We also used this strategy success-
fully in the TACAS software verification competition [10].
However, strictly speaking we should not make an equally
strong claim, despite the large bounds we were able to explore
(representing at least a 3-fold increase over the size of the
counterexamples found with smaller bounds). We therefore
“wagered” only a weighting of 6 marks for each of these
labels. In the end, this turned out to be too cautious, since all
of our results here where correct, and we achieved 408, 390,
and 408 out of 549 possible marks for the three problems,
respectively.

3.3 Medium problems
The substantially larger size of these programs (approxi-

mately 4,800-9,500 lines of code) means that we could unroll
them only to much smaller bounds. We were able to ana-

@ Springer

lyze the easy problem (Problem4) at a bound of n = 20
and the moderate and hard problems at n = 7 before the
calculations became intractable. However, for the moderate
problem (Problem5) we were unable to find any reachable
error labels for this bound. This is in marked contrast to the
hard problem (Problemé6), where we found 26 reachable
error labels. We discounted the moderate results as an anom-
aly, because we were unable to resolve this situation during
the Challenge, and submitted solutions only for the easy and
hard problems (i.e., Problem4 and Problem6). After the
results were released, we realized that all reachable labels in
Problemb require counterexample traces with at least eight
inputs, which is just outside our chosen unwinding bound.
We used the same marking scheme as for the small prob-
lems; in particular, we kept a weighting of 6 marks for the
problems where we did not find a counterexample within the
bounds. This time our caution proved slightly more justified,
as one of the labels (error12) of Problem4 is reachable
with 21 inputs, just outside our unwinding bound of n = 20.
However, this was the only wrong result we produced, and we
achieved 420 and 444 out of 549 possible marks, respectively.

3.4 Abstraction into Boolean programs

By default, ESBMC uses Z3, a satisfiability solver modulo
theories, as backend engine. Z3 supports a wide variety of
different theories, including uninterpreted functions, arrays,
and linear integer arithmetics, which are very useful for gen-
eral software verification. However, the offline challenge pro-
grams are very simple, and require none of these operations.
In particular, all int-typed state variables are only assigned
a small number of of different integer values, and the only
operations on them are assignment and equality comparison,
both with constant integer operands. We thus experimented
with a Boolean abstraction, in which the state variables were
replaced by the appropriate number of Booleans. However,
this turned out to be counter-productive: the larger number
of assignments led to larger VCs and longer solver times. We
suspect that Z3’s built-in bit-blasting implements the same
approach more efficiently.

4 Checking the behavioral properties
4.1 Approach

The challenge rules allow different approaches to handle the
behavioral properties, but we interpret and verify them as
LTL formulae over the program’s variables. We thus first
converted the given formulae into our LTL notation, replac-
ing the propositional shorthand notation by explicit com-
parisons involving input and output (e.g., 1B becomes
input==2), and eliminating the WU operator along the
way. We then converted these formulae further into C monitor

Applying symbolic bounded model checking

523

code and model-checked the combined system (i.e., original
program and monitor). An early version [17] of our system
ran the program and monitor as concurrent threads, but we
now have an optimized scheduling scheme for this case. This
scheduler only triggers a step of the BA monitor when any of
the variables used in the LTL formula are assigned a value.

Originally, we checked only for the validity of the behav-
ioral properties encoded in the LTL formulae and ignored
the reachability properties; more specifically, we ignored the
assert (0)-statements at the error labels. This means that
we allowed the underlying finite state machine to ignore the
invalid input that led to the invalid state, so that it could
even transition out of it again (more precisely, resume from
the last valid state). However, when we tested this approach
against the evaluation examples (specifically Problem10),
it became clear that a different way of interpreting the inter-
action between the error labels and the LTL formulae was
assumed, that of pruning away such behaviors. We thus
replaced the assert (0)-statements at the error labels by
assume (0)-statements.

4.2 Interpretation of results

Itis rarely possible to verify an LTL property by only explor-
ing finite traces. A simple co-safety property such as Fp
might be verifiable, but only if every execution of the pro-
gram sets p to true within the unwinding bound. A safety
property such as G, cannot be verified using finite traces,
but a witness may be found to its failure. A liveness property
such as (p = F—=p) A (—=p — Fp) cannot be shown to be
true or false using finite traces although, for this expression,
evidence of toggling of p might be reassuring.

Our approach computes its outcome by determining the
worst (i.e., closest in the domain B4 to satisfying the never
claim) behavior of any explored finite trace of the program.
The four cases correspond to traces as follows:

— P is bad wrt. ¢: At least one trace guarantees the sat-
isfaction of the never claim, i.e., the BA is able to visit
an accepting state infinitely often regardless of the future
behavior of the program. The extracted BMC counterex-
ample is a true counterexample of the safety property.

— P isfailing wrt. ¢: Atleast one trace will satisfy the never
claim if the program stutters, i.e., continues infinitely with-
out changing any observed state.

— P is succeeding wrt. ¢: For at least one trace, there exists
some future evolution of the BA’s observable state in which
the never claim is satisfied, but no such evolution is stut-
tering.

— P is good wrt. ¢: For no trace can the never claim be
satisfied by any future extension. Typically, every trace
has resulted in the (non-deterministic) BA reaching a set of

states, where no state has a successor. The extracted BMC
counterexample is a true witness of the co-safety property.

Note that the two definitive cases (i.e., bad and good) are
“sticky” in the sense that increasing the unwind bound for
the underlying C program cannot change the outcome.

As demonstrated in the example below, not all LTL for-
mulae are able to exhibit all these behaviors, regardless of
the program to which they are coupled. Our static analysis
of the BA allows us to catalogue the available behaviors for
each LTL expression.

4.3 An example

We take as an example the LTL formula for the first behav-
ioral property for the small/easy case, i.e., the output U occurs
before output Z:

(! oZ WU (oU & ! 07Z))

After translation into our input format, the never claim
becomes

I (({output !'= 26} U ({output == 21}
&& {output != 26}))
|| (G {output != 26}))

We can see that our direct translation of the LTL has
the potential to investigate unreachable states; the pro-
gram state {output == 21} && !{output != 26}
is potentially explored by the BA although it is clearly
unreachable by the C program. In this particular case, how-
ever, the automaton as shown in Fig. 1 does not have explicit
transitions on such unreachable states. If there were transi-
tions enabled only on unreachable states, they would intro-
duce additional possible behaviors of the BA. These would
never be explored by ESBMC as the monitor BA is coupled
to the C program. They would, however, show up in the “opti-
mistic” analysis of the possible future behaviors of the BA
after the unwound bound limit is reached. This in turn could

'{output !'= 26}

true

Fig. 1 The BA generated for the never claim of the property output U
occurs before output Z

@ Springer

524

J. Morse et al.

lead to excessively cautious conclusions about the program’s
correctness wrt. to the LTL formulae. Program runs may be
labeled succeeding when a more carefully constructed BA
would show them as good. We could have used auxiliary C
variables to ensure that no such redundant transitions were
generated but, in order to avoid extensive rewriting of the
programs, we have taken the naive approach.

This particular LTL formula does not fall into any of the
three simple types of property, safety, co-safety, or liveness.
A finite preﬁx3 can be good (e.g. (oV, oV, oU), where the
BA fails) or bad (e.g. (oV, oV, 0Z), where the BA is guaran-
teed to be able to remain in an accepting loop). It can also be
succeeding (e.g. (oV, oV, oV, oV), where both success and
failure remain possible but an infinite stutter extension would
be good). This particular BA cannot, however, show failing
behavior.

We are thus able to use an automatic analysis of the avail-
able behaviors of the BA to guide our confidence in the finite-
trace results obtained from coupling the BA to the C program
using ESBMC.

4.4 Analysis results

We were only able to achieve useful unwind bounds on the
three small problems and the medium/easy problem (i.e.,
Probleml to Problem4). Table 2 summarizes the results.
For all small problems, all outcomes are the same for unwind
bounds 9-14. We thus have reasonable confidence in our
results for the small problems.

For the medium/easy problem there are a few properties
(#0, #14, #17, #77, #98) where the outcome changes with
increasing unwind bounds. However, in all cases the change
is from failing to good, corresponding to finally reaching the
co-safety witness with the next iteration of the program’s
loop.

Overall, the definitive (i.e., good and bad) and incon-
clusive (i.e., succeeding and failing) outcomes are roughly
equally common. However, we find substantially more coun-
terexamples (200) than witnesses (12).

We used program Probleml0 . c to validate our analysis
results. For the 100 given LTL properties, our approach pro-
duced, with the scheme outlined above, only two false results
(for #13 and #30). In both cases, we claim that the formula
is succeeding, while the validation suite claims an explicit
counterexample. However, in both cases the counterexample
involves invalid inputs, which we have explicitly ruled out.

We thus submitted every good (bad) case as a success
(failure) with a weighting of 9, since we get explicit wit-
nesses (counterexamples). The succeeding and failing cases

3 Since this specific LTL formula only uses output the traces (and thus
prefixes) consist of output-literals only. However, the corresponding
input values can still be extracted from the BMC counterexamples.

@ Springer

are more problematic; based on the results we achieved over
the validation suite, we have chosen to report them, even for
the medium/easy code, as success and failure with weight-
ings of 7 and 9 respectively.

4.5 Discussion

For the 400 properties we analyzed we returned 385 (96.3 %)
correct results, which gives us, with the weights as explained
above, a total score of 2,991 marks. This compares well to the
results achieved by the teams from Twente [20] (3,492 marks,
99.0 % correct) and Paris (3,069 marks, 98.1 % correct).

The 15 wrong results fall into two different categories. In
five cases, we find that the program is failing (resp. succeed-
ing) wrt. the property, but the failure (resp. success) result
that we report is wrong, because our unwind bounds are too
small. In the remaining cases we find that the program is bad
wrt. the property, but the counterexample trace goes through
an error state; this trace should eventually be pruned away
(using an assume (0) -statement) at an error label, but the
automaton accepts a number of additional inputs sufficient
to push this error label over the unwinding bound.

5 Conclusions

Clearly, if symbolic bounded model checking is a ham-
mer it is doubtful whether the Challenge problems are the
right nails. For the reachability problems, ESBMC is orders
of magnitude slower than Java Pathfinder, an explicit-state
model checker for Java [22], and we failed to process the
large problems. However, we expect that our relative per-
formance would improve with larger sets of inputs and out-
puts. On the other hand, we are encouraged that ESBMC, a
general-purpose multi-threaded C model checker, has been
able to generate useful analyses of these large and some-
what unusual systems. For the reachability properties we
only produced one wrong result, despite the fact that we
are using a bounded analysis. For the behavioral properties,
we produced 15 wrong results and achieved a success rate
of 96.3 %, which is relatively close to the winner’s success
rate of 99.0 %. We believe that our software model check-
ing approach will become more competitive as the programs
become more complicated (e.g., use of larger alphabets, arith-
metic operations in the state updates, or data structures), and
plan to participate in future Challenges with such problems.

Acknowledgments The authors acknowledge the use of the IRIDIS
High Performance Computing Facility, and associated support services
at the University of Southampton, in the completion of this work

Appendix: Detailed results

See Tables 1 and 2.

525

Applying symbolic bounded model checking

- 862l 9 + - 0s¢e’e 9 + - 8¥¢ - 1L 9 + = €W = L0 9 + - 9¢Ilc — L0 9 + oglouyg
9 0Lty 6 — - 181°9 9 + - €LT - LL 9 + = T8I — L0 9 + - 9LyT - L0 9 + ezouyg
- 866 9 + - ¥ST°9 9 + S 0¢€6 s LoS 6 — — 97t -~ 80 9 + - 0¢97C - 80 9 + ggiouyg
L €S8'¢ 6 — LI 08CST 6 — S €68 s gos 6 — - vl - L0 9 + - 8l6c - 80 9 + [gioug
- eer'r 9+ 81 €09vT 6 — 14 6v8 ¥ 69 6 — — 8651 - L0 9 + - 6Svc — 60 9 + 9glouyg
- LT6 9 + - €TI'L 9 + - 8L - 16 9 + = ¥¥ee - L0 9 + - 8851 - 60 9 + cgiouyg
9 vLY'Y 6 — - 019 9 + - 9vC - 8¢ 9 + = 9ver - L0 9 + - 9L6l — 60 9 + yoouyg
- wIr'r 9+ - 88L1 9 + - e — ool 9 + - 6T - 80 9 + - 0ILe - 01 9 + ¢pouyg
- 066 9 + - 689°¢ 9 + - SLL - 9L 9 + - €9t -— 80 9 + - 8¢ - L0 9 + ooy
9 €0y 6 — - 8LIT'T 9 + - ye8l — Cel 9 + = TIST - L0 9 + ¢ I'8¥C S 8¢ 6 — lcloly
9 Uty 6 — - vIT°8 9 + - BIr — C0Il 9 + = TLLI - L0 9 + ¥I 6¥ST L 9¢ 6 — Oclolyg
- egr'r 9+ 0T L89°LT 6 — - 9gcve — 06l 9 + = €y - L0 9 + - 09¢Tc — 90 9 + erioug
- gL't 9+ L L60°LT 6 — - 8¥S - U8 9 + = 19 - L0 9 + - 0 — L0 9 + griouyg
- 616 9 + LI €08°¢T 6 — - 99¢l — 88 9 + = 6¥r - L0 9 + - 98l — L0 9 + Lrioug
- (49 9 + - LLT'8 9 + - 009 - 901 9 + 8 LVIT S e 6 - - 9L — L0 9 + 9oy
9 eSsvy 6 — LI LyLvyl 6 — - Isve — VLI 9 + - ¢t - 90 9 + S lece S LT 6 — ¢sloug
- 120°1 9 + LI 869Vl 6 — - 861 - T8 9 + - 8¥9¢ - L0 9 + B A Y4 L0 9 + yrouyg
- e'r 9+ Ll YEL'ST 6 — S 006 ¢ 96¥ 6 - € 0¢ce 14 ¥'e 6 - - 00vc — 90 9 + ¢rionyg
9 v’y 6 — - 90L01 9 + - 180c — ¢Syl 9 + = 0¥ST - L0 9 + - €09 - L0 9 + croug
9 LYy 6 — 8l 0z6'Ll 6 — - g6l — LTI 9 + — 0061 — L0 9 + - £9¢e - L0 9 + TIrioug
9 780 6 — - 89L ‘¥ 9 + - 144 - LS 9 + — 08I - 90 9 + - CI8tc — L0 9 + orfoug
9 9%0'¢ 6 — LI 608Cl 6 — 9 66 9 809 6 — — sewc -~ L0 9 + - §0cc — L0 9 + 6loy
- 088 9 + - 8LL9 9 + - (433 - 19 9 + - $0ST - L0 9 + - gee — L0 9 + glouyg
- 098 9 + - £06°C 9 + - 8LTT — LSI 9 + - 18T -— 80 9 + - 68t — L0 9 + Loy
- st 9+ el 8691 6 — - 8Ly - 6€ 9 + - ¢95 - 01 9 + - L6%¢ — L0 9 + gloig
9 y9Y 6 — - ¥Ts 9 9 + - L06 - I8 9 + - 0L6l - 80 9 + - 16 — 90 9 + glorrg
9 $89vY 6 — 81 SLE'6L 6 — - 1281 — vl 9 + = 961 - L0 9 + - 0L — L0 9 + 1011
- 9zo'r 9 + - 0zr's 9 + - 88s'c — LL1 9 + — 60t -— L0 9 + - 8I8Cc - 80 9 + eloLyq
L 8Ly 6 — - 6€8°9 9 + - 6S¢ - L9 9 + —= 0¥t -— L0 9 + - 8l6c - 80 9 + cloy
9 816y 6 — - 6€0°8 9 + - acLr — 691 9 + - vew - L0 9 + - 06Lc — 80 9 + [RRCH
L 89% 6 — - 86511 9+ - €LET — S0LT 9 + = L0 - vl 9 + - 09sc — 80 9 + 01oLrg
9 W'y 6 — S SOT°S 6 - 14 ELL LA) 4 6 - § L6t 9 ¥ 6 - £ §0ce [4 ¥ 6 - [eqo1D
7 owl m 1 awi, m 1 Quwl, 7 Qwll m FA-10014 7 owll, m 7 Quwill, 7 owll m [°qe1
1Ty vTe L€8°98T T68'9¢€l SIS'LY €VE6S 91T'8 6€T°6S ¥8T'8 (DAl
L=u oc=1u oc=u L=u os=u L= os=u L=
QUIS TOIJ pUD TqOId cwsTqoId ZwaTC0Id TS Tqoxd

sonzadoxd Ayjiqeyoeal oy) 10§ SINSAY | I[qEL

pringer

As

J. Morse et al.

526

syuowuSISse ur DA oY) JO 9ZIS 9y SOAIS [DA| "SPUOIIS YOO[d-[[eM UT USAIS ST owil], ‘punoj a[dwexardjunod ay) ur syndut Jo Joquunu Y} ST 7 “SINSAL INO YIIM JBIOOSSE
M SYTEW 9y} SOJOUSp M "9[qBYOBAIUN ST [oqe] Y} JBY) WIe[d sny) om :o[dWeXaIojunod € Punoj jou dABY oM Jey) sueal +,, "(S[rej weidoxd oyy o°T) 9[qeyoeal ST [oqe[JOIId oy} jey) sueaw ,—,,

9 €8y 6 — - LLT*9 9 + - STe'l ['cl 9 + 0I 09¢C 9 L'e 6 - - 68T — L0 9 + estouyg
9 6sSy 6 — o6l Isv'e1 6 — - Cl8 99 9 + - §80C — 90 9 + - 1'86C — 90 9 + gglouy
- S8y 9 + - orIr 9+ - LLT L 9 + - yoLt - 90 9 + 6 LS 9 9C 6 — Lsloug
9 6Ly 6 — - 66T °S 9 + - 661 9 9 + - 9¢cCc - 90 9 + 9 9vre 9 ¢c 6 — 9clolyg
- 9L9 9 + LI 6C6°C1 6 — - 125! €6 9 + - S68l — L0 9 + - Lloc - L0 9 + ¢grouy
- 926 9 + - 0€8 ‘S 9 + - L9L VL 9 + - 0991 - L0 9 + - Sv6Cc - Lo 9 + pclouyg
- 6er‘’r 9+ - 9LL'V 9 + - L¥0 ‘T 0LI 9 + - 61ISI — 80 9 + - S0 — L0 9 + ¢grouyg
- LT6 9 + 6l oreTr 6 - 9 988 0°sS 6 - - ¥ve9%r — 90 9 + - st — 80 9 + oy
- cer 9+ - 189°6 9 + - (44" 144! 9 + - sesl — L0 9 + - I'ege — L0 9 + 1¢louyg
- 606 9 + - 8IT°S 9 + S 6L6 oS 6 — 9 €8¢ ¥ ¥ 6 - S LYET S ST 6 — 0clouyg
- wsor 9+ - L89°L 9 + - LOS €L 9 + - 6¢lc — L0 9 + - ¥eLe — L0 9 + epiouyg
L Sy 6 — - 16€°¢ 9 + - 1494 L8 9 + - 9wl - L0 9 + - 668C — L0 9 + splouyg
9 vLTY 6 — - 89 9 + - 61L°1 6 9 + - 9¢lc — 80 9 + L 81¥C L 9C 6 — Lylolg
- ver'r 9+ - 1444 9 + - 14014 8¢ 9 + - 691 - L0 9 + - £9s¢ - 90 9 + oplouyg
- 996 9 + 81 6IT°ST 6 — 9 20T 1 ey 6 - S T1'6LC L ¥ 6 - - Le6lc — L0 9 + ¢plouyg
9 8Ly 6 — - 194 9 + - 100 ‘C el 9 + 6 67T L e 6 — Tl Tetc S e 6 — pploug
- 6911 9 + - PeSE 9 + S v16 1494 6 - € £78¢cE L ¢ 6 - - 9L6C — L0 9 + ¢pronyg
— 87808 9 + - 881¢ 9 + - 14 S'L 9 + - 67TC — L0 9 + - v¥se - L0 9 + tyronyg
- 12 9 + - 65¢CS 9 + - ¥0$ ¥'9 9 + - yeewe — 80 9 + - 98 - L0 9 + Iploug
- (44 9 + 8 6T°L91 6 — - 9¢C L'L 9 + - I'eoc — L0 9 + - veLe — 60 9 + Oplouyg
- 91l 9 + 6l €800 6 — 9 910 ‘1 88y 6 - - 6SPE — L0 9 + - glIsc - L0 9 + eglouyg
L L6y 6 — 81 €e8°Ll 6 — - 08¥% 69 9 + - 08cr - L0 9 + ¢ §6¢LT S 9C 6 — 8cloly
L Y o6 — - 629 °¢ 9 + 9 €C8 S'Ly 6 - - 6l6el — L0 9 + 9 &¢It 9 LT 6 — Leloug
L Isv'y 6 — LI 8TLLT 6 — - P8¢ '8 9 + - ¢LLT = L0 9 + - ¢gorc - 90 9 + oglouyg
- €eer'r 9 o+ L1 L9SST 6 — 9 Sev'l 1Y% 6 - - ¥vell — 80 9 + €1 T0tC S L'c 6 — gelolyg
- wer 9+ - TTE9 9 + - L9S L1 9 + - 78 - 80 9 + - 86LC — L0 9 + ypelouy
9 869V 6 — - v6T ‘L 9 + - 6¢¢ 6L 9 + - ¥SssL — L0 9 + 6 ¥See 9 ST 6 — gelouyg
- eer’r 9+ L1 L66Vl 6 — - v 09 9 + - oLwr - 80 9 + 01 1'9¢C L 9¢ 6 — celoly
- ave‘r 9 + 6l 6691 6 — ¢ 296 'Ly 6 - - gecl - L0 9 + - LogT — 80 9 + Iglouyg
Jewi, m 1 wi, m 7 euwiy, awi, M FRE-11014 § j owi, m P10 § J owi m [°qe 1
1Tr'vee L€8°98T TS89l SI8'LY €VE6S 91T'8 6€T°6S ¥8T'8 [DAl
L=u Oc=u oc=1u L=u og=1u L= os=u L=
we TqoId pwe Tqoad cusTqoId gusTqoId TWeTqoxd

panunuod | dqey,

pringer

Qs

Applying symbolic bounded model checking

527

Table 2 Results for behavioral properties

Probleml Problem2 Problem3 Problemd
n 9 0 11 12 13 14 9 10 11 12 13 14 9 0o 11 12 13 14 9 10 11 12 13 14
o T2 TP TP TP TP TP TP TP TP TP TP TP T T T T T T L T T T T T
1 1p 1P QP QP P P TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP _— _ _
2 TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP 1 1L 1 L - —
3 17 1P 1P 1P 1P 1P TP TP TP TP TP TP L 1 L L L L TP TP TP TP -— —
4 1 1 1 L L L+r L+ L1 L L L L 1P AP 1P 1P 1P 1P TP TP TP TP — —
s 1L 4 1 L L L 1P 1P AP 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P — —
6 TP TP TP TP TP TP L 1 L1 L 1 L 1 1 L+ 1 L L1 1 L 1 1 — —
7 1 14 1 1 L L 1P 1P AP 1P 1P 1P TP TP TP TP TP TP 1 1 1 1 - —
8 L 1L L L L L TP TP TP TP TP TP 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P —
9 17 1ir 1P 1P ir 1 1 1 1 L L L TP TP TP TP TP TP TP TP TP TP — —
o TP TP TP TP TP TP L L L L L L 1P 1P 1p 1P 1P 17 1 1 1 1 - —
mhm+ +r 45 5+ L5 1z L+r L L+r L5 1 L L L L L L L TP TP TP TP - —
22 1L L 1 L L L TP TP TP TP TP TP TP TP TP TP TP TP 1P 1P 1P P — —
B3+ L 1L 4+ L 1 L+ L L+ L L L 1P 1P 1r 1P 17 17 1 1 1 1 - —
4 1+ 1L L L L+ L L L L L L L TP TP TP TP TP TP 1P T T T T T
5 L 4+ L L L L TP TP TP TP TP TP 1 1L L L L L TP TP TP TP - —
6 L 1L 1L 1L L L TP TP TP TP TP TP 1 1L 1L L L L L L L L — —
7 L. L+ L L L L L 1P 1P 1P g o1 1L L L X L 1P 1P 1P 1P 1P T
¥ L 4+5 4+ 4+r 4+r +r L+ 1r +r L+ L+ L TP TP TP TP TP TP 1P 1P P 1P 1P -
9 X+ L L L L L TP TP TP TP TP TP TP TP TP TP TP TP 1 1 1 L - —
2 L 1L 1L L5 L L5 Lr +r +r L+ L+ L+ TP TP TP TP TP TP 1L 1L L 1L - —
21 L L L 1 L L 1P 1P QP P P o 1 1 L L L L TP TP TP TP — —
2 1l 4L 1L 1L L L TP TP TP TP TP TP TP TP TP TP TP TP 1 1 1L L - —
23 1p P i, 4P P 1 1 1L 1L L 1L L L 1 L L L L TP TP TP — T =
24 1r 1P 1P 4P P 1 1 1L 1L L L L TP TP TP TP TP TP 1 1 1 1 - —
25 1p 1P i, 4P P 1 1 1L 1L L 1L L L 1 L+r L L L 1 L 1 1 - —
26 1L L L 1 L L 1P 1P AP 1P 1P 1P TP TP TP TP TP TP 1P 1P 1P 1P — —
27 L L 1L 11 L L1 1P 1P 4P P QP o 1 1 L 1L L L 1 L 1 1 - —
286 L L L L L+ L 1P 1P AP P QP o1 1 1 L L L L 1P 1P 1P 1P 1P -
2 N I I I O o e e 1 L - —
3 L L 1L 44 L L TP TP TP TP TP TP L 1L L L L1 L 1P 1P 1P 1P - —
33 L+ 1 4% +Xr 1L L+r L5 L+ L+r L L+r L L L+ L L L TP TP TP - - —
32 TP TP TP TP TP TP L L L L L L LP 1P 1P 1P 1P 1P 1P 1P 1P 1P — —
33 TP TP TP TP TP TP L L L L L1 L L1 1 L L1 L L TP TP TP - - —
4 1 1L 1L 1L Ll Ll L 1r 1r 2+r 5z L 1 5+ L+ L+ L L L L L L - —
3 TP TP TP TP TP TP TP TP TP TP TP TP 1P 1P 1P P 1P 1P TP TP TP TP — —
¢ 17 1P 1, 4P P 1 1 1L 1L L 1L L L 1 L+ L L L 1 L 1 1 - —
3 TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP 1 1 1 L - —
8 L 0L L 144 L+r 1 LXr L L+ L L L 1P AP 1P 1P 1P 17 1 1 1 1 - —
3% 1. 1L 1L Ll 4L Lr 4+r 4+r 1+r 2+r 15+ L+ 1 5+ L+ L L L L L L L - —
40 L7 1» 1, 4y P o1 3 1 L 1L 1L L 1 L L L& L L1 L L1 L 1L - —
41 TP TP TP TP TP TP 1P P P (P (P ¥ L L L L L L 1P 1P 1P 1P - —
42 1 1L 1 1L 1 L TP TP TP TP TP TP L L L L 1 L — —
43 1L 1L 1 1 1 1+ 1 L+ L L L L TP TP TP TP TP TP L L 1L L — —
4 1 1 1L 1L L L TP TP TP TP TP TP P 1P 1P 1P 1P 1P TP TP TP TP -— —
45 TP TP TP TP TP TP 1P 1P P P P P (P P 1P 1P 1P 1P 1 1 1 1 — —

@ Springer

528

J. Morse et al.

Table 2 continued

Probleml Problem2 Problem3 Problemd
n 9 0 11 12 13 14 9 10 11 12 13 14 9 0o 11 12 13 14 9 10 11 12 13 14
46 L7 1P 1P 1P 1P, 1 1 1 L L L L 1P 1P 1P AP 1P 1P TP TP TP — - —
47 1P 1P 1, 4P 4P, o 1+ 1L L 1L 1L L 1L L L L1 L L 1P 1P 1P 1P - —
48 1P 1P 1P ip 1P, 1 1 1 L L L L TP TP TP TP TP TP L 1 1 L - —
49 TP TP TP TP TP TP L 1 L L1 L L 1 L L L L L1 1P 1P 1r 1P 17 -
so L 145 1l 5+ L+r 15 L+r L L L L L TP TP TP TP TP TP 1 1 1 1 - —
51 L. L+ L 1L L L TP TP TP TP TP TP 1P 1P 1P 1P 1P 1P TP TP TP TP — —
s2 L 14X 1L L+ L L TP TP TP TP TP TP L L L L L L TP TP TP - - —
53 TP TP TP TP TP TP TP TP TP TP TP TP 1P 1P 1P 1P 1P 1P 1 1L 1 L - —
54 TP TP TP TP TP TP TP TP TP TP TP TP 1 1 L L1 L L1 1 L 1 1 - —
ss L L 1L 1 L L TP TP TP TP TP TP L 1L L L L L 1P 1P 1P 1P - —
s6 L L 1 141 L+r 1 L+r L L+ L L L 1P 1P ir 1P 1P 17 1 1 1 1 - —
57 TP TP TP TP TP TP 1P P P P 1P P TP TP TP TP TP TP 1 1 1 L - —
58 1p 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P 1P TP TP TP TP TP TP 1 1 1 1 - —
59 1°p i, 1P 1P i 1 1 1 1 L L L TP TP TP TP TP TP TP TP TP — - —
6 L 1 1L 1L 4l L Lr +r 4+r +r +r L+ T T T T T T L L L L - —
60 L 1 1L 1L 1L L L5 L1r +r +r 1+r +r 1z L+ L+ L L L L L L L - —
62 L L1 1L L1 L1 L 1P 1, 1P 17 1 1» T T T T T T L L L L — —
63 TP TP TP TP TP TP P P 1P 1P P 1P TP TP TP TP TP TP | 1L L L — —
64 1°p 1, 1, 1 4 1 1 15 15 15 1 1L 1L L L L L L TP TP TP TP - —
65 TP TP TP TP TP TP TP TP TP TP TP TP 1P P P P P 1P | L L L - —
66 TP TP TP TP TP TP 1L L1 L L L L 1P 1P 1P 1P 1P 17 1 1L L 1L - —
67 1L L L L1 L L 1P 1P AP 1P QP 1P TP TP TP TP TP TP 1 1 1 L - —
68 L L L 1L L L TP TP TP TP TP TP 1 L1 L L L L L1 L 1 1 - —
69 TP TP TP TP TP TP TP TP TP TP TP TP | L1 L L L L L1 L 1L L - —
7 TP TP TP TP TP TP L L1 L L L L T T T T T T L L1 1 L - —
7t L 1 1 +Xr 1L Lr L+r 1r L+r L L+ L 1P 1P 1P P 1P 1 1L 1 1 L - —
7 4L 1L 1L L 1 L 1P AP 1P 1P AP 1P TP TP TP TP TP TP 1L 1 1 L - —
73 TP TP TP TP TP TP P P P P P ¥ | L L L L L 1P 1P 1P 1P — —
7“4 0+ 0L L L L L TP TP TP TP TP TP 1 L 1L L L1 L1 L L 1 L - —
75 0L 0L L+ o+ L L+ 1P AP 1P 4P P 1 T T T T T T L 1 1 L - —
76 TP TP TP TP TP TP L 1L L L L L 1P 1P 1P 1P 1P 1P TP TP - - - —
77 L 1 1 1+ 1L 15X L+r 1 L+r L Lr L+ L Lr L L L L 1P 1P 1P 1P - T
78 L1p P 1P 1P 1P 1P 1P qP P P P o 1 1L L 1L L L 1 L 1 1 - —
79 TP TP TP TP TP TP L L L L L L TP TP TP TP TP TP TP TP TP - —
g L L L L L L TP TP TP TP TP TP TP TP TP TP TP TP 1 1 1 L - —
g L L L L+ L+ L+ L+ L+ L L5 L5 Lr L+r Lr Lr r r L 1r 1 1 1 - —
g L L L L L L TP TP TP TP TP TP 1P 1P 1P 1P 1P 17 1 1 1 1 - —
g L L L L L L+ L L L L5 L+r L+r T T T T T T L L L L 1L —
84 1p AP P P 1P 1r 1P 1P 1P 1P 1P 1P TP TP TP TP TP TP 1 1 1 1 - —
8 P AP P 1P AP 1r TP TP TP TP TP TP L 1 L L L L 1P 1P 1P 1P 1P —
86 L 1L L 1L 144 L 1 L L L+ L Lr T T T T T T L L L 1 - —
gL L 0L 9L 9L L L+ L+ L L L L L TP TP TP TP TP TP 1 1 1 L — —
8 TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP TP — —
¢“% L L L L L L TP TP TP TP TP TP TP TP TP TP TP TP 1P 1P 1P 1P 1P -—
%0 L. 1L 1L 1 L1 L1 L1 1 1 L L L TP TP TP TP TP TP 1P 1P 1P 1P - —
91 TP TP TP TP TP TP L L L L L L 1P 1P 1P 1P 1P 17 1 1L L L — —

@ Springer

Applying symbolic bounded model checking 529
Table 2 continued
Probleml Problem?2 Problem3 Problemd

n 9 0 11 12 13 14 9 0o 11 12 13 14 9 10 11 12 13 14 9 10 11 12 13 14
92 TP TP TP TP TP TP TP TP TP TP TP TP 1 1L 1L L L L L L L L - —
93 . 1L 1L 1L L L L 1r Lr Lr L L TP TP TP TP TP TP 1L 1L L L - —
% 1. 1L 1L L L L 1P 1, 1P, 1P 1P 1 1 1L 1L L L L L L L L - —
95 TP TP TP TP TP TP 1P 1P 1P P 1P 1P 1 1L 1L L L L LP 1P 1P 1P - —
% L. 1L 1L L1 L L 1P 1P 1P 1P 1P 1P TP TP TP TP TP TP TP TP TP — TP -
97 . 1L 1L 1L 1L L L 1r L1 L L L TP TP TP TP TP TP 1 1L L L - —
98 TP TP TP TP TP TP L L 1 1L 1 1 1 1 Lr L L L L T T T T T
%9 1. 1L 1L L L L TP TP TP TP TP TP TP TP TP TP TP TP |1 1L L L - —
Only claims are shown, for different unwinding bounds (n = 9 to n = 14). “—" denotes a time-out (fmax = 3,600 s). Boldface denotes changes in
the outcomes as the unwinding bounds change

References 12. Gastin, P, Oddoux, D.: Fast LTL to Biichi Automata Translation.

11.

Babiak, T., Kfetinsky, M., Rehdk, V., Strejéek, J.: LTL to Biichi
Automata translation: fast and more deterministic. TACAS, LNCS
7241, 95-109 (2012)

Bauer, A., Haslum, P.: LTL goal specifications revisited. ECAI’10
Front. Artif. Intell. Appl. 215, 881-886 (2010)

Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics
for runtime verification. J. Log. Comput. 20(3), 651-674 (2010)
Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for
bit-vectors and arrays. TACAS, LNCS 5505, 174-177 (2009)
Chai, M., Li, X., Zhao, L.: Runtime verification based on 4-valued
past time LTL. In: Intl. Conf. Computer Science and Information
Processing, pp. 567-570 (2012)

Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C
programs. TACAS, LNCS 2988, 168-176 (2004)

Clarke, E., Lerda, F.: Model checking: software and beyond. J.
Univ. Computer Sci. 13, 639-649 (2007)

Cordeiro, L., Fischer, B.: Verifying multi-threaded software using
SMT-based context-bounded model checking. ICSE, pp. 331-340
(2011)

Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded
model checking for embedded ANSI-C software. IEEE Trans.
Softw. Eng. 38(4), 957-974 (2012)

Cordeiro, L., Morse, J., Nicole, D., Fischer, B.: Context-bounded
model checking with ESBMC 1.17. TACAS, LNCS 7214, 533-536
(2012)

de Moura, L.M., Bjgrner, N.: An efficient SMT solver:Z3. TACAS,
LNCS 4963, 337-340 (2008)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

CAV, LNCS 2102, 53-65 (2001)

Holzmann, G.: The SPIN Model Checker—Primer and Reference
Manual. Addison-Wesley, Boston (2004)

Kupferman, O., Vardi, M.: Model checking of safety properties.
Formal Methods Syst. Design 19(3), 291-314 (2001)

Lamport, L.: What good is temporal logic? Inf. Process. 83, 657—
668 (1983)

Li, X., Chai, M., Zhao, L., Tang, T., Xu, T.: Safety monitoring
for ETCS with 4-valued LTL. In: Intl. Symposium Autonomous
Decentralized Systems, pp. 86-91 (2011)

Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Context-bounded
model checking of LTL properties for ANSI-C software. SEFM,
LNCS 7041, 302-317 (2011)

Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Model checking
LTL properties over ANSI-C programs with bounded traces. J.
Softw. Syst. Model (2013) (Online first)

Pnueli, A.: The temporal logic of programs. FOCS, pp. 46-57
1977)

van de Pol, J., Ruys, T.C., te Brinke, S.: Thoughtful Brute force
attack of the RERS 2012 and 2013 challenges. STTT, this volume
(2014)

Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.:
Property-driven benchmark generation: synthesizing programs of
realistic structure. STTT. doi:10.1007/s10009-014-0336-z (2014)
Visser, W.: Personal communication (2012)

@ Springer

http://dx.doi.org/10.1007/s10009-014-0336-z

	Applying symbolic bounded model checking to the 2012 RERS greybox challenge
	Abstract
	1 Introduction
	2 Experimental set-up
	2.1 ESBMC
	2.2 Bounded LTL model checking
	2.3 Challenge problems
	2.4 Execution of experiments

	3 Checking the reachability properties
	3.1 Approach
	3.2 Small problems
	3.3 Medium problems
	3.4 Abstraction into Boolean programs

	4 Checking the behavioral properties
	4.1 Approach
	4.2 Interpretation of results
	4.3 An example
	4.4 Analysis results
	4.5 Discussion

	5 Conclusions
	Acknowledgments
	Appendix: Detailed results
	References

