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Abstract. We have implemented an improved memory model for ESBMC which
better takes into account C’s memory alignment rules and optimizes the gen-
erated SMT formulae. This simultaneously improves ESBMC’s precision and
performance.

1 Overview

ESBMC is a context-bounded symbolic model checker that allows the verification of
single- and multi-threaded C code with shared variables and locks. ESBMC was origi-
nally branched off CBMC (v2.9) [4] and has inherited its object-based memory model.
With the increasingly large SV-COMP benchmarks this is now reaching its limits. We
have thus implemented an improved memory model for ESBMC; however, we opted for
an incremental change and have kept the underlying object-based model in place, rather
than adapting a fully byte-precise memory model as for example used by LLBMC [7].
We believe this strikes the right balance between precision and scalability.

In this paper we focus on the differences from the ESBMC version used in last year’s
competition (1.20) and, in particular, on the memory model; an overview of ESBMC’s
architecture and more details are given in our previous work [1–3, 5].

2 Differences to ESBMC 1.20

In the last year we have mostly made changes to improve ESBMC’s stability, precision,
and performance. In addition to the improved memory model (see below) we made a
wide range of bug fixes and replaced the string-based accessor functions of the interme-
diate representation (which also go back to CBMC v2.9) by proper accessor functions.
This change alone improves ESBMC’s speed by roughly a factor of two.

3 Memory Model

The correct implementation of operations involving pointers is a significant challenge
in model checking C programs. As a bounded model checker, ESBMC reduces the
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bounded program traces to first order logic, which requires us to eliminate pointers in
the model checker. We follow CBMC’s approach and use a static analysis to approx-
imate for each pointer variable the set of data objects (i.e., memory chunks) at which
it might point at some stage in the program execution. The data objects are numbered,
and a pointer target is represented by a pair of integers identifying the data object and
the offset within the object. The value of a pointer variable is then the set of (object,
offset)-pairs to which the pointer may point at the current execution step. The result
of a dereference is the union of the sets of values associated with each of the (object,
offset)-pairs.

The performance of this approach suffers if pointer offsets cannot be statically de-
termined, e.g., if a program reads a byte from an arbitrary offset into a structure. The
resulting SMT formula is large and unwieldy, and its construction is error-prone. To
avoid this, we extended the static pointer analysis to determine the weakest alignment
guarantee that a particular pointer variable provides, and inserted padding in structures
to make all fields align to word boundaries, as prescribed by C’s semantics.

These guarantees, in combination with enforcing memory access alignment rules,
allow us to significantly reduce the number of valid dereference behaviours and thus
the size of the resulting formula, and to detect alignment errors which we have previ-
ously ignored. In circumstances where the underlying type of a memory allocation is
unclear (e.g., dynamically allocated memory with nondeterministic size), we fall back
to allocating a byte array and piecing together higher level types from the bytes.

Other models checkers (in particular LLBMC [7]) treat all memory as a single byte
array, upon which all pointer accesses are decomposed into byte operations. This can
lead to performance problems due to the repeated updates to the memory array that
need to be reflected in the SMT formula.

4 Competition Approach

In bounded model checking, the choice of the unwinding bounds can make a huge
difference. In contrast to previous years, where we only used a single experimentally
determined unwinding bound, we now operate an explicit iterative deepening schema
(n = 8, 12, 16). This replaces the iterative deepening that is implicit in the k-induction
that we used last year [5]. In addition, we no longer use the partial loops option [3].
For categories other than MemorySafety we only check for the reachability of the
error label and ignore all other built-in properties. We use a small script that implements
iterative deepening and calls ESBMC with the main parameters set as follows:

esbmc --timeout 15m --memlimit 15g --64 --unwind <n>
--no-unwinding-assertions --no-assertions --error-label ERROR
--no-bounds-check --no-div-by-zero-check --no-pointer-check <f>

Here, --no-unwinding-assertions removes the unwinding assertion and thus
a correctness claim is not a full correctness proof ; however, this increases ESBMC’s
performance in the competition. The script also sets the specific parameters for the
MemorySafety category. The run script and a self-contained binary for 64-bit Linux
environments are available at www.esbmc.org/download.html; other versions
are available on request. For the competition we used the Z3 solver (V4.0).
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5 Results
With the approach described above, ESBMC correctly claims 1837 benchmarks cor-
rect and finds existing errors in 557. However, it also finds unexpected errors for 38
benchmarks and fails to find the expected errors in another 52. The failures are con-
centrated in the MemorySafety and Recursive categories, where we produce 36
and 15 unexpected results, respectively. In MemorySafety, these are caused by differ-
ences in the memory models respectively assumed by the competition, and implemented
in ESBMC; in particular, in 22 cases ESBMC detects an unchecked dereference of a
pointer to a freshly allocated memory chunk, which can lead to a null pointer violation
and so mask the result expected by the benchmark. In Recursive, all unexpected
results are false alarms, which are caused by bounding the programs. Additionally,
ESBMC produces 259 time-outs, which mostly stem from the larger benchmarks in
ldv-consumption, ldv-linux-3.4-simple, seq-mthreaded, and eca.
The remaining programs fail due to parsing errors (16), conversion error (1), or dif-
ferent internal (mostly out-of-memory) errors during the symbolic execution (108). ES-
BMC produces good results for all categories but MemorySafety and Recursive;
however, since we did not opt out of these, our overall result suffered substantially.

ESBMC’s performance has improved greatly over last year’s version (v1.20). The
number of errors detected has gone up from 448 to 557, while the number of un-
expected and missed errors has gone down, from 53 to 38 and from 209 to 52, re-
spectively. The biggest improvements are in the categories Sequentialized and
ControlFlowInteger.

Demonstration Section. We took part in the stateful verification, error-witness check-
ing, and device-driver challenges tracks. In particular, we use EZProofC [6] to collect
and manipulate the counterexample produced by ESBMC in order to reproduce the
identified error for the first round (B1) of the error-witness checking.
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