
Lazy-CSeq: A Lazy Sequentialization Tool for C �

(Competition Contribution)

Omar Inverso1, Ermenegildo Tomasco1, Bernd Fischer2,
Salvatore La Torre3, and Gennaro Parlato1

1 Electronics and Computer Science, University of Southampton, UK
2 Division of Computer Science, Stellenbosch University, South Africa
3 Dipartimento di Informatica, Università degli Studi di Salerno, Italy

{oi2c11,et1m11,gennaro}@ecs.soton.ac.uk, bfischer@cs.sun.ac.za,
slatorre@unisa.it

Abstract. We describe a version of the lazy sequentialization schema by La
Torre, Madhusudan, and Parlato that is optimized for bounded programs, and
avoids the re-computation of the local state of each process at each context switch.
Lazy-CSeq implements this sequentialization schema for sequentially consistent
C programs using POSIX threads. Experiments show that it is very competitive.

1 Introduction

Sequentialization translates concurrent programs into (under certain assumptions) equiv-
alent non-deterministic sequential programs and so reduces concurrent verification to
its sequential counterpart. The widely used (e.g., in CSeq [2,3] or Rek [1]) sequential-
ization schema by Lal and Reps (LR) [6] considers only round-robin schedules with
K rounds, which bounds the number of context switches between the different threads.
LR first replaces the shared global memory by K indexed copies. It then executes the
individual threads to completion, simulating context switches by non-deterministically
incrementing the index. The first thread works with the initial memory guesses, while
the remaining threads work with the values left by their predecessors. The initial guesses
are also stored in a second set of copies; after all threads have terminated these are used
to ensure consistency (i.e., the last thread has ended its execution in each round with
initial guesses for the next round).

LR explores a large number of configurations unreachable by the concurrent pro-
gram, due to the completely non-deterministic choice of the global memory copies and
the late consistency check. The lazy sequentialization schema by La Torre, Madhu-
sudan, and Parlato (LMP) [4,5] avoids this non-determinism, but at each context switch
it re-computes from scratch the local state of each process. This can lead to verifica-
tion conditions of exponential size when constructing the formula in a bounded model
checking approach (due to function inlining). However, for bounded programs this re-
computation can be avoided and the sequentialized program can instead jump to the
context switch points. Lazy-CSeq implements this improved bounded LMP schema
(bLMP) for sequentially consistent C programs that use POSIX threads.
� This work was partially funded by the MIUR grant FARB 2011-2012, Università degli Studi

di Salerno (Italy).

E. Ábrahám and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 398–401, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Lazy-CSeq: A Lazy Sequentialization Tool for C 399

2 Verification Approach

Overview. bLMP considers only round-robin schedules with K rounds. It further as-
sumes that the concurrent program (and thus in particular the number of possible threads)
is bounded and that all jumps are forward jumps, which are both enforced in Lazy-CSeq
by unrolling. Unlike LR, however, bLMP does not run the individual threads to comple-
tion in one fell swoop; instead, it repeatedly calls the sequentialized thread functions in
a round-robin fashion. For each thread it maintains the program locations at which the
previous round’s context switch has happened and thus the computation must resume
in the next round. The sequentialized thread functions then jump (in multiple hops)
back to these stored locations. bLMP also keeps the thread-local variables persistent (as
static) and thus, unlike the original LMP, does not need to re-compute their values
from saved copies of previous global memory states before it resumes the computation.

Data Structures. bLMP only stores and maintains, for each thread, a flag denoting
whether the thread is active, the thread’s original arguments, and an integer denoting the
program location at which the previous context switch has happened. Since it does not
need any copy of the shared global memory, heap allcotion needs no special treatment
during the sequentialization and can be delegated entirely to the backend model checker.

Main Driver. The sequentialized program’s main function orchestrates the analysis.
It consists of a sequence of small code snippets, one for each thread and each round,
that check the thread’s active flag (maintained by Lazy-CSeq’s implementation of the
pthread create and pthread join functions), and, if this is set, non-determinis-
tically increment the next context switch point pc cs (which must be smaller than the

if (active_tr[thr_idx] == 1) {
pc_cs = pc[thr_idx] + nondet_uint();
assume(pc_cs <= SIZE_<thr_idx>);
thread_<thr_tdx>(thr_args[thr_idx]);
pc[thr_idx] = pc_cs;

}

thread’s size), call the sequen-
tialized thread function with
the original arguments, and
store the context switch point
for the next round. Lazy-
CSeq obtains from the un-
rolling phase the set of thread instances that the original concurrent program can pos-
sibly create within the given bounds. This allows the static construction of the main
driver. Note that the choice of the context switch points in the driver is the only addi-
tional non-determinism introduced by the sequentialization.

Thread Translation. The sequentialized program also contains a function for each
thread instance (including the original main) identified during the unrolling phase.
Within the function each statement is guarded by a check whether its location is be-
fore the stored location or after the next context switch non-deterministically chosen
by the driver. In the former case, the statement has already been executed in a previ-
ous round, and the simulation jumps ahead one hop; in the latter case, the statement
will be executed in a future round, and the simulation jumps to the thread’s exit. Each
jump target (corresponding either directly to a goto label or indirectly to a branch of
an if statement) is also guarded by an additional check to ensure that the jump does
not jump over the context switch. Since bLMP only explores states reachable in the



400 O. Inverso et al.

original concurrent program, assert statements need no special treatment during the
sequentialization and can be delegated entirely to the backend model checker.

3 Architecture, Implementation, and Availability

Architecture. Lazy-CSeq is implemented as a source-to-source transformation tool in
Python (v2.7.1). Like CSeq [2,3] and MU-CSeq [7] it uses the pycparser (v2.10,
github.com/eliben/pycparser) to parse a C program into an abstract syn-
tax tree (AST). However, in order to produce the right jump targets Lazy-CSeq un-
rolls all loops and replicates the thread functions. The sequentialized program can then
be processed independently by any sequential verification tool for C. Lazy-CSeq has
been tested with CBMC (v4.5, www.cprover.org/cbmc/) and ESBMC (v1.22,
www.esbmc.org).

A small wrapper script bundles up translation and verification. It also invokes Lazy-
CSeq repeatedly, with the parameters -f2 -w2 -r2 -d135, -f4 -w4 -r1 -d145,
-f16 -w1 -r1 -d220, and -f11 -w1 -r11 -d150. Here f and w are the unwind
bound for for (i.e. bounded) and while (i.e. potentially unbounded) loops, respec-
tively, r is the number of rounds, and d is the depth option for the backend. We leave the
analysis running to completion every time, without timeouts or memory limits. When
the result is TRUE, the scripts restarts the analysis with the next set of parameters. As
soon the script gets FALSE, it returns FALSE. Only if the analysis using the last set of
parameters is finished and the results is TRUE, then the scripts returns TRUE.

Availability and Installation. Lazy-CSeq can be downloaded from http://users.
ecs.soton.ac.uk/gp4/cseq/lazy-cseq-0.1.zip; it also requires instal-
lation of the pycparser. It can be installed as global Python script. In the competition
we only used CBMC as a sequential verification backend; this must be installed in the
same directory as Lazy-CSeq.

Call. Lazy-CSeq should be called in the installation directory as follows:
lazy-cseq.py -i<file> --spec<specfile> --witness<logfile>

Strengths and Weaknesses. Since Lazy-CSeq is not a full verification tool but only a
concurrency pre-processor, we only competed in the Concurrency category. Here it
achieved a perfect score.

References

1. Chaki, S., Gurfinkel, A., Strichman, O.: Time-bounded analysis of real-time systems. In: FM-
CAD, pp. 72–80 (2011)

2. Fischer, B., Inverso, O., Parlato, G.: CSeq: A Sequentialization Tool for C (Competition Con-
tribution). In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 616–618.
Springer, Heidelberg (2013)

3. Fischer, B., Inverso, O., Parlato, G.: CSeq: A Concurrency Pre-Processor for Sequential C
Verification Tools. In: ASE, pp. 710–713 (2013)

github.com/eliben/pycparser
www.cprover.org/cbmc/
www.esbmc.org
http://users.ecs.soton.ac.uk/gp4/cseq/lazy-cseq-0.1.zip
http://users.ecs.soton.ac.uk/gp4/cseq/lazy-cseq-0.1.zip


Lazy-CSeq: A Lazy Sequentialization Tool for C 401

4. La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent reachability
to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
477–492. Springer, Heidelberg (2009)

5. La Torre, S., Madhusudan, P., Parlato, G.: Sequentializing parameterized programs. In: FIT,
EPTCS 87, pp. 34–47 (2012)

6. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to sequential analy-
sis. Formal Methods in System Design 35(1), 73–97 (2009)

7. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-CSeq: Sequentialization
of C Programs by Shared Memory Unwindings (Competition Contribution). In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 402–404. Springer, Heidelberg
(2014)


	Lazy-CSeq: A Lazy Sequentialization Tool for C �(Competition Contribution)
	1 Introduction
	2 Verification Approach
	3 Architecture, Implementation, and Availability
	References




