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Abstract. We describe a new CSeq module for the verification of multi-threaded
C programs with dynamic thread creation. This module implements a variation of
the lazy sequentialization algorithm implemented in Lazy-CSeq. The main nov-
elty is that we now support an unbounded number of context switches and allow
unbounded loops, while the number of allowed threads still remains bounded.
This is achieved by a modified sequentialization transformation and the use of
the CPAchecker as sequential verification backend.

1 Introduction

The tool CSeq [2,3] is a modular framework for the verification of multi-threaded C
programs with dynamic thread creation that is based on sequentialization: the concur-
rent input program is translated into a corresponding sequential program, which is then
verified using existing verification tools for sequential programs. Modules of CSeq im-
plement different eager sequentialization schemes [2,3,7,8] and lazy sequentialization
schemes targeted to bounded model checking [4,5].

The module Lazy-CSeq [5] implements a lazy sequentialization for bounded pro-
grams that avoids the recomputation of local states of the first lazy scheme [6]. It allows
us to explore all runs of the original concurrent program up to a bounded number of
context switches (arranged in rounds of a round-robin schedule). The new module UL-
CSeq described here removes two limitations of this schema: it no longer bounds the
number of rounds, and it can handle unbounded programs. In particular, while we still
bound the number of threads in a run and the depth of the recursion in recursive func-
tion calls we keep the loops (i.e., we do not unroll them), as long as they do not contain
thread creation statements. The resulting program has a finite control flow graph and
thus is suitable for the tool CPAchecker [1] that we use in our experiments.

2 Verification Approach

Overview. Our sequentialization scheme bounds the number of possible threads in the
program, which is achieved indirectly by finite unrolling of the loops that contain thread
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creation statements. It runs the threads for an unbouded number of rounds, scheduling
them in a round-robin fashion until all the threads terminate. The overall structure of
the sequentialized program thus has a main driver and a simulation function for each
thread. The purpose of the driver is to repeatedly call, in an infinite while-loop, the
thread simulation functions according to a round-robin schedule. In each iteration an
entire round of contexts (one for each thread) is executed.

For each thread, we maintain the program locations at which the previous round’s
context switch has happened and thus the computation must resume in the next round.
To ensure the correctness of resuming from previous context switch, we also keep a
global variable to store each thread’s current mode (i.e., resume, execute, or suspend) in
the simulation: To avoid the recomputation of the local states when a thread is resumed,
we declare its local variables as static (i.e., persistent) and keep track of the program
counter for each thread.

Heap allocation needs no special treatment during the sequentialization and can be
delegated entirely to the backend model checker.

Thread Translation. The sequentialized program also contains a thread simulation
function for each thread instance (including the original main). The code shared by
multiple threads is duplicated for each of them such that each thread has its own code,
and in particular, its own copy of the thread-local variables.

In the translation, we inject a guard for each statement to control the resumption,
execution, and suspension of each thread. The injected code is
if (__cs_simulate == 1 || /* execute */

(__cs_simulate == 0 && __cs_pc_1 == current_pc)){/*resume*/
__cs_simulate = 1;
if (__VERIFIER_nondet_bool()){ /* context switch guess */

__cs_pc_1 = current_pc; /* save program location */
__cs_simulate = 2; } /* suspend this thread */

else { /* execute statement */ }
}

On resuming, this control code makes the function to skip all statements up to the
program counter value at the last context switch. On positioning at the corresponding
statement, the mode changes to execution, and the statements are executed until a con-
text switch happens, and then the mode changes to suspend. In this mode, we skip the
instructions until returning to the main driver. Context switches are nondeterministi-
cally guessed in the execution mode before each statement is executed.If- and while-
statements also require the injection of similar code to guard the control flow conditions.

3 Architecture, Implementation, and Availability

Architecture. UL-CSeq is implemented as a source-to-source transformation tool in
Python (v2.7.1). It uses thepycparser (v2.10,https://github.com/eliben/
pycparser) to parse a C program into an abstract syntax tree (AST). The sequential-
ized program can then be processed independently by any sequential verification tool
for C. UL-CSeq has been tested with CPAchecker (v1.3.4, http://cpachecker.
sosy-lab.org/).

https://github.com/eliben/pycparser
https://github.com/eliben/pycparser
http://cpachecker.sosy-lab.org/
http://cpachecker.sosy-lab.org/
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A small script bundles up translation and verification. The script first invokes the
translation which sequentializes the concurrent program, and then calls the CPAchecker
to analyze the sequentialized program as follows: cpa.sh -timelimit
86400 -heap 12000M -preprocess -stats -predicateAnalysis
-outputpath output. The script returns TRUE (safe) or FALSE (unsafe) accord-
ing to the analysis of CPAchecker.
Availability and Installation. UL-CSeq can be downloaded from this link http://
users.ecs.soton.ac.uk/gp4/cseq/ul-cseq-svcomp15.tar.gz; it al-
so requires installation of the pycparser. In the competition we used CPAchecker as
a sequential verification backend; this must be installed in the directory of UL-CSeq.
CPAchecker also requires the installation of Java Runtime Environment. For the compe-
tition, a compressed version of CPAchecker is included, and it can beused when unzipped.
Call. Since UL-CSeq is not a full verification tool but only a concurrency pre-processor,
we only compete in the Concurrency category. Here, it should be called in the
installation directory as follows: ./UL-CSeq.py -i file --spec specfile
--witness logfile.
Strengths and Weaknesses. UL-CSeq’s main strength compared to Lazy-CSeq and
MU-CSeq is that, due to the use of the CPAchecker as backed, a TRUE result now
represents an actual correctness proof (at least if the number of threads in the program
is bounded), and not just a failure to find an error. Its main weakness is that this is
slower than the approach taken in Lazy-CSeq and MU-CSeq, resulting in a relatively
large number of timeouts, and a lower overall score. Moreover, we still need to bound
the number of threads a priori.
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