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Abstract. We present the MU-CSeq tool for the verification of multi-
threaded C programs with dynamic thread creation, dynamic memory
allocation, and pointer arithmetic. It is based on sequentializing the
programs over the new notion of individual memory location unwind-
ing (IMU). IMU is derived from the notion of memory unwinding that
has been implemented in the previous versions of MU-CSeq. The main
concepts of IMU are: (1) the use of multiple write sequences, one for each
individual shared memory location that is effectively used in the execu-
tions and (2) the use of memory addresses rather than variable names
in the operations on the shared memory, which requires a separate table
to map write sequences but supports pointer arithmetic.

1 Verification Approach

MU-CSeq 0.4 follows the sequentialization approach to verification. Its idea is to
translate, using a code-to-code translation that preserves the verification prop-
erty of interest, a concurrent program into a sequential one, which is then ana-
lyzed using a symbolic sequential verification tool.

In MU-CSeq 0.4 we have implemented a sequentialization based on the novel
notion of individual memory location unwindings (IMU). IMU is derived from
the concept of memory unwinding that has been implemented in the previous
versions of MU-CSeq [2,3]. A memory unwinding (MU) is an explicit represen-
tation of the sequence of write operations into the shared memory performed
by the threads. Each element of the sequence represents a write operation char-
acterized by the identifier of the writing thread, the variable identifier, and the
written value. The sequentialized program first guesses the values in the MU
using non-determinism–supported by symbolic verification tools–and then sim-
ulates each thread against the MU. If each thread matches its memory writes in
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the MU then their sequential simulation corresponds to a valid execution of the
original concurrent program (see [2] for more details).

IMU improves on MU by providing a separate memory unwinding for each
individual shared memory location corresponding to a scalar type or a pointer.
To recreate a global total order over the shared memory writes we associate a
timestamp (i.e., a distinct natural number) with each write in each individual
MU. This is crucial for the correctness of the simulation since it is used to
synchronize the simulation of the individual threads (otherwise the distinct MUs
can give rise to many total orders).

Another important feature of the new encoding is to associate each memory
location with its physical memory address. When a read or write operation is
performed using a memory address, e.g., *p=3 for a pointer variable p, we first
search for the location corresponding to the value of p and then simulate the
read/write operation as we would do for scalar variables (for which the locations
are statically known).

This new representation of the writes has several good features when used in
combination with sequential BMC verification tools. In particular, the use of the
individual MU simplifies the simulation of read and write operations resulting
in much smaller verification conditions and verification time. In fact, for each
memory access, the formula now only contains an encoding of the corresponding
individual sequence and not the whole sequence of writes. Although the high
level idea is simple, we observe that the underlying reasoning for IMU is more
involved than MU.

Another advantage of IMU is that it gives a simple and effective way to sup-
port dynamic memory allocation and pointer arithmetics. This feature was not
implemented in previous versions of MU-CSeq as it requires convoluted simu-
lation functions resulting in a blowup of the verification time of the sequential
BMC backend analysis.

IMU not only improves MU as we have mentioned above but also simplifies
the development of new sequentialization schemes for other interesting properties
of concurrent programs such as data-race and deadlock detection as well as weak
memory models including TSO and PSO.

2 Software Architecture

The sequentializations in MU-CSeq 0.4 are implemented as source-to-source
transformations in Python (v2.7.9), within the re-factored CSeq framework [4].
This uses the pycparser (v2.14, http://github.com/eliben/pycparser) to parse
a C program into an abstract syntax tree (AST), and then traverses the AST
to construct a sequentialized version, as outlined above. The resulting program
can be processed independently by any verification tool for C, but we have only
tested MU-CSeq 0.4 with CBMC (v5.2, www.cprover.org/cbmc/). For the com-
petition we use a wrapper script that bundles up the translation, calls CBMC
for verification, and returns its output.

Our tool takes the following options: w is the bound on the number of write
operations for each location, f is the unwind bound for for -loops, u is the unwind

http://github.com/eliben/pycparser
www.cprover.org/cbmc/


940 E. Tomasco et al.

bound for the remaining loops, b is the number of bits used for shared variables
and memory addresses, p is the number of tracked locations that are stored on
the heap, m is the maximal number of malloc invocations, v is the bound on the
number of lock/unlock operations on single locations, ml is the bound on the
number of lock/unlock operations on the whole memory, and thl is the bound
on the number of threads that are spawned in any while-loop.

We use a simple syntactic analysis of the program to determine which
schema and parameters we use in the competition. If the program contains more
than 30 assignments but no loops, or a pthread create inside a constant
bounded for -loop, we use the inter-thread coarse-grained MU with parameters
-w2 -f52 -u1 -b7 (for the MU scheme, w actually denotes the length of the
overall sequence of writes). Otherwise we use the IMU scheme with the following
parameters:

-w7 -u1 -f2 -b12 -p5 -v6 -ml7 -m3 -thl3, for programs with
arrays;
-w7 -u2 -f2 -b12 -p2 -v6 -ml7 -m3 -thl3, if the program con-
tains thread-local variables;
-w<c1> -u1 -f<c1> -b17 -p2 -v6 -ml7 -m3 -thl3, if the program’s
for -loops are upper bounded by a constant <c1> and do not contain
pthread create;
-w6 -u1 -f2 -b7 -p2 -v6 -ml7 -m3 -thl3, otherwise.

All parameter values were empirically determined. We use a timeout of 70 s, and
interpret the cases where this timeout applies as true.

3 Tool Setup and Configuration

Availability and Installation. MU-CSeq 0.4 is available at http://users.
ecs.soton.ac.uk/gp4/cseq/mu-cseq-0.4.zip; it also requires installation of the
pycparser. CBMC must be installed in the same directory as MU-CSeq. The
wrapper script for the tool on the BenchExec repository is mu-cseq.py.

Call. MU-CSeq should be called in the installation directory as mu-cseq.py -i
file --spec specfile.

Fig. 1. Comparison of MU-CSeq v0.3 and v0.4.

Strengths and Weaknesses.
Since MU-CSeq 0.4 is not a full
verification tool but only a con-
currency preprocessor, we only
competed in the Concurrency
category. Here we achieved a full
score, with an overall runtime of
circa 45 min for all benchmarks in
the category. Compared to MU-
CSeq 0.3 [2], the new version
achieved a substantial speedup
over most of the benchmarks, as
shown by the scatter plot in Fig. 1.
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