
Lazy-CSeq 2.0: Combining Lazy
Sequentialization with Abstract Interpretation

(Competition Contribution)

Truc L. Nguyen1, Omar Inverso4, Bernd Fischer2, Salvatore La Torre3,
and Gennaro Parlato1(B)

1 Electronics and Computer Science, University of Southampton,
Southampton, UK

gennaro@ecs.soton.ac.uk
2 Division of Computer Science, Stellenbosch University, Stellenbosch, South Africa

3 Dipartimento di Informatica, Università degli Studi di Salerno, Fisciano, Italy
4 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. Lazy sequentialization has emerged as one of the most effec-
tive techniques to find bugs in concurrent programs. However, the size of
the shared global and thread-local state still poses a problem for further
scaling. We therefore use abstract interpretation to minimize the repre-
sentation of the concurrent program’s state variables. More specifically,
we run the Frama-C abstract interpretation tool over the sequentialized
program output by Lazy-CSeq to compute over-approximating intervals
for all (original) state variables and then exploit CBMC’s bitvector sup-
port to reduce the number of bits required to represent these in the
sequentialized program. We demonstrate that this leads to substantial
performance gains on complex instances.

1 Verification Approach

Overview. In recent editions of the software verification competition [1,5,9,10],
as well as in complex industrial case studies [11], sequentialization has proven
to be a very effective program verification approach expecially for bug-hunting
purposes. However, the size of the shared global and thread-local state still poses
a problem for further scaling. In an experiment [11], we manually reduced the
size of the state variables to the minimum required to find the bug (three bits in
the case of safestack), which lead to a 20x speed-up. This clearly indicates the
potential benefits of such a reduction.

Here, we automate this reduction and integrate abstract interpretation into
the lazy sequentialization described in [6], in order to minimize the representa-
tion of the concurrent program’s state variables, and to scale up sequentializa-
tion to more complex concurrent verification tasks. This integration of abstract
interpretation is the main novelty of Lazy-CSeq 2.0 over previous versions [5,8].

Partially supported by EPSRC EP/M008991/1, INDAM-GNCS 2016, and MIUR-
FARB 2014–2016 grants.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 375–379, 2017.
DOI: 10.1007/978-3-662-54580-5 26



376 T.L. Nguyen et al.

More specifically, we use abstract interpretation to over-approximate the
intervals of all variables of the sequentialized program P ′ corresponding to a
given a concurrent program P . Then, we replace in P ′ the original state vari-
ables from P with bitvectors of sizes sufficient to safely represent them; these
bitvectors are often much smaller than the original data types. Finally, the result-
ing sequential program P ′′ is verified using an off-the-shelf verification backend
for sequential programs. In Lazy-CSeq 2.0, we rely on Frama-C [2] as abstract
interpretation framework for the interval analysis and CBMC [3] as sequential
verification backend with native support for bitvectors.

In more detail, we first transform the input concurrent program P into a
bounded concurrent program by inlining the functions and unwinding the loops
up to a given depth. Then, we sequentialize this program by bounding the num-
ber of rounds of thread executions; in each round all threads are executed at most
once and always in the same order [6]. The resulting non-deterministic sequential
program P ′ simulates all computations that P can execute in the given number
of round-robin schedules and loop unwinding depth. Program flattening guar-
antees that in P ′ there is a bounded number of threads, that each statement is
executed at most once, and that all jumps are forward. P ′ consists of a main
driver function and a simulation function for each thread instance (including the
original main) identified during the unrolling phase.

Data Structures. P ′ stores and maintains, for each thread, a flag denoting
whether the thread is active, the thread’s original arguments, and the program
location at which the previous context switch has happened. In addition, Lazy-
CSeq 2.0 also maintains, for each thread, the length of each round. An important
optimization is that all variables in P ′ that refer to program locations (i.e., the
context switch locations, the round lengths, and the current program counters)
are now kept separate for each thread, which allows us to use bitvectors with
different sizes as data types, and so to reduce the memory overhead introduced
by the translation. Further, as mentioned above, the original state variables of
P are represented in P ′′ using bitvectors of a possibly more compact size, safely
over-approximated using abstraction-based interval analysis.

Main Driver. The main function of P ′ consists of two phases. The first phase
simply guesses all round lengths, and ensures that the guesses are smaller than
the corresponding thread sizes. In our experience this leads to simpler verifi-
cation conditions than the original approach, where the individual run lengths
were guessed right before the corresponding sequentialized thread functions were
called. The second phase consists of a sequence of small code snippets, one for
each thread and each round, that (if the thread’s active flag is on) set the next
context switch point, call the sequentialized thread function with the original
arguments, and store the context switch point for the next round.

Thread Translation. Within the simulation function for each thread instance,
each statement is guarded by a check whether its location is before the stored
location or after the guessed next context switch. In the former case, the state-
ment has already been executed in a previous round, and the simulation jumps



Lazy-CSeq 2.0: Combining Lazy Sequentialization 377

ahead one hop; in the latter case, the statement will be executed in a future
round, and the simulation jumps to the thread’s exit. Each jump target (cor-
responding either directly to a goto label or indirectly to a branch of an if
statement) is also guarded by an additional check to ensure that the jump does
not jump over the context switch.

2 Software Architecture

Lazy-CSeq 2.0 is implemented as a source-to-source transformation tool in
Python (v2.7.9) within the CSeq framework [4,7], which consists of indepen-
dent modules that can be configured and composed easily. In particular, it is
implemented as CSeq configuration of about twenty modules, which include (i)
the frontend processing module, which is based on the pycparser (v2.14, http://
github.com/eliben/pycparser); (ii) simple transformation modules to rewrite
the input program in steps into a progressively simplified syntax; (iii) trans-
lators for program flattening to produce a bounded program [6]; (iv) two mod-
ules implementing the sequentialization algorithm and that produce a backend-
independent sequentialized file [6]; (v) wrappers for the abstract interpretation
backend and for transforming the program’s state variables into bitvectors of
compact size, exploiting the over-approximated intervals; (vi) a standard pro-
gram instrumentation to adapt the sequentialized file for a specific backend; and
(vii) wrappers for backend invocation and user report generation or counterex-
ample translation.

Due to CSeq’s source-to-source translation architecture, we can use Frama-C
as a black box. We simply run it over the sequentialized program and extract,
for each state variable, the intervals estimated at the end of P ′. Since these over-
approximate the size requried to hold the variables’ values at any given program
point, the bitvector transformation can simply compute bitvector sizes from the
upper bounds of these intervals.

3 Tool Setup and Configuration

Availability and Installation. Lazy-CSeq 2.0 can be downloaded from http:
//users.ecs.soton.ac.uk/gp4/cseq/lazy-cseq-2.0-svcomp17.tar.gz. It can be inst-
alled as global Python script. It requires installation of the pycparser, CBMC
(v5.6), and Frama-C (Aluminium version); CBMC must be installed in the same
directory as the Python script. For convenience, our archive contains the required
CBMC and Frama-C versions. The wrapper script for the tool on the BenchExec
repository is lazycseqabs.py.

Call. Lazy-CSeq 2.0 only participates in the concurrency category. It should be
called in the installation directory using a wrapper script as follows:

lazy-cseq-abs.py -i<file> --spec<specfile> --witness<logfile>.

Note that Lazy-CSeq 2.0 produces a witness in a CBMC-like textual format,
since there is no witness format for concurrent programs. The wrapper script

http://github.com/eliben/pycparser
http://github.com/eliben/pycparser
http://users.ecs.soton.ac.uk/gp4/cseq/lazy-cseq-2.0-svcomp17.tar.gz
http://users.ecs.soton.ac.uk/gp4/cseq/lazy-cseq-2.0-svcomp17.tar.gz


378 T.L. Nguyen et al.

bundles up translation and verification and calls Lazy-CSeq 2.0 six times, with
different parameters and bounds. As soon as it detects a reachable error condition
within the given bounds, it reports FALSE and terminates; otherwise it continues
with the next set of parameters otherwise. If the last invocation reports no
reachable error conditions, the script returns TRUE.

4 Strengths and Weaknesses

Since Lazy-CSeq 2.0 is not a full verification tool but only a concurrency pre-
processor, we only competed in the Concurrency category.

Lazy sequentialization has already proven to be effective, especially in a bug-
hunting setting, in recent editions of the software verification competition. The
strength of this year’s approach is in the compact bitblasting induced by the
combined use of abstract interpretation’s interval analysis and bitvector support.
This can indeed provide significant analysis speedups on complex problems. In
particular, interval analysis turns out to be quite lightweight yet quite accurate
even on such problems, perhaps due to the particularly simple structure of the
sequentialized programs. In practice, the interval analysis requires only a few
hundreds of milliseconds to a few seconds, and overall verification times can
improve by tens of seconds.

The intervals of the program’s state variables are safely over-approximated,
to minimize the number of bits needed for their representation while avoiding
overflow problems. This enabled us to correctly solve all benchmarks.

On the other hand, one possible weakness of our approach is that a judicious
choice of bounding parameters is essential, because it is ultimately based on
bounded model-checking. This is not really a problem in the competition setting,
where fine-tuning of the parameters is possible during the training phase.

References

1. Beyer, D.: Reliable and reproducible competition results with benchexec and wit-
nesses (Report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 55

2. Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs. In: SCAM, pp.
123–124 (2009)

3. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

4. Fischer, B., Inverso, O., Parlato, G.: CSeq: a concurrency pre-processor for sequen-
tial C verification tools. In: ASE, pp. 710–713 (2013)

5. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: a
lazy sequentialization tool for C. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 398–401. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 29

http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-642-54862-8_29
http://dx.doi.org/10.1007/978-3-642-54862-8_29


Lazy-CSeq 2.0: Combining Lazy Sequentialization 379

6. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 585–602. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-08867-9 39

7. Inverso, O., Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: a
context-bounded model checking tool for multi-threaded C-programs. In: ASE,
pp. 807–812 (2015)

8. Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy sequentialization for the
safety verification of unbounded concurrent programs. In: Artho, C., Legay, A.,
Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 174–191. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-46520-3 12

9. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Verifying con-
current programs by memory unwinding. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 551–565. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 52

10. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-
CSeq 0.4: individual memory location unwindings. In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 938–941. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49674-9 65

11. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Lazy
sequentialization for TSO and PSO via shared memory abstractions. In: FMCAD,
pp. 193–200 (2016)

http://dx.doi.org/10.1007/978-3-319-08867-9_39
http://dx.doi.org/10.1007/978-3-319-46520-3_12
http://dx.doi.org/10.1007/978-3-662-46681-0_52
http://dx.doi.org/10.1007/978-3-662-46681-0_52
http://dx.doi.org/10.1007/978-3-662-49674-9_65

	Lazy-CSeq 2.0: Combining Lazy Sequentialization with Abstract Interpretation
	1 Verification Approach
	2 Software Architecture
	3 Tool Setup and Configuration
	4 Strengths and Weaknesses
	References


