
Program Repair as Sound Optimization of Broken Programs

Bernd Fischer
School of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, United Kingdom

Email: b.fischer@ecs.soton.ac.uk

Ando Saabas and Tarmo Uustalu
Institute of Cybernetics

Tallinn University of Technology
Akadeemia tee 21, EE-12618 Tallinn, Estonia

Email: {ando|tarmo}@cs.ioc.ee

Abstract

We present a new, semantics-based approach to me-
chanical program repair where the intended meaning of
broken programs (i.e., programs that may abort under a
given, error-admitting language semantics) can be defined
by a special, error-compensating semantics. Program re-
pair can then become a compile-time, mechanical program
transformation based on a program analysis. It turns a
given program into one whose evaluations under the error-
admitting semantics agree with those of the given program
under the error-compensating semantics. We present the
analysis and transformation as a type system with a trans-
formation component, following the type-systematic ap-
proach to program optimization from our earlier work [12].
The type-systematic method allows for simple soundness
proofs of the repairs, based on a relational interpretation
of the type system, as well as mechanical transformability
of program correctness proofs between the Hoare logics for
the error-compensating and error-admitting semantics.

We first demonstrate our approach on the repair of file-
handling programs with missing or superfluous open and
close statements. Our framework shows that this repair
is strikingly similar to partial redundancy elimination op-
timization commonly used by compilers. In a second ex-
ample, we demonstrate the repair of programs operating a
queue that can over- and underflow, including mechanical
transformation of program correctness proofs.

Keywords: program repair, type systems, similarity re-

lations, program optimization soundness, program logics,

mechanical transformation of program correctness proofs

1 Introduction

Programmers make mistakes. More often than not, these

mistakes manifest themselves in run-time errors that are not

caught and lead to abortion. Compilers can be made to

detect the possibility of such mistakes by program safety

analyses, but they cannot correct them because they cannot

know the intended, non-erroneous meaning. Thus it may

look as if program repair (i.e., transforming programs with

abnormal evaluations into programs with meaningful nor-

mal evaluations) is inevitably a manual activity.

In this paper, we contest this view by proposing a new,

semantics-based approach to program repair. Our cen-

tral idea is to define the intended meaning of broken pro-

grams (i.e., programs that are may abort under a given

error-admitting language semantics) by a special, error-
compensating semantics under which programs have no or

fewer abnormal evaluations. Program repair can then be-

come a compile-time, mechanical program transformation

that turns a given program into one whose evaluations under

the error-admitting semantics agree with those of the given

program under the error-compensating semantics. We build

such repair transformations upon program analyses devised

specifically to achieve this form of semantic soundness. In

devising error-compensating semantics and repairs we pre-

fer parsimony. This is a justified by a form of Occam’s ra-

zor: it makes sense to choose a simple explanation for the

mistakes in a broken program and thus a simple correction.

Technically, and this is our second key idea, we de-

scribe our program analyses and transformations as type
systems with a transformation component as in our earlier

work on program optimizations [12]. The type-systematic

method allows for clear separation between the issues of

what count as valid analysis and transformation results for

a given program (type derivation checking) and how to

find the strongest one (principal type inference). As a ma-

jor practical benefit, this detachment gives simple semantic

soundness proofs that also admit a logical counterpart in the

form of mechanical transformability of program correctness

proofs between the Hoare logics for the error-compensating

and error-admitting semantics.

We present our approach on two examples: repair of file-

handling programs, which may have missing or superfluous

open and close statements, and repair of programs manipu-

lating a queue that can under- and overflow. Both examples

2009 Third IEEE International Symposium on Theoretical Aspects of Software Engineering

978-0-7695-3757-3/09 $25.00 © 2009 IEEE

DOI 10.1109/TASE.2009.61

165

show that program repair is similar to program optimiza-

tion: both are program transformations that are sound and

improving in a clear mathematical sense. We can therefore

recognize problems and exploit solutions from program op-

timization, and indeed, file access repair is strikingly simi-

lar to partial redundancy elimination à la Paleri et al. [10],

which moves expression evaluations.

Our examples are simple, but this is intentional. We

have consciously removed all detail that does not con-

tribute to conveying the intuitions we find important. Our

previous results on type-systematic program optimization

[12, 13, 14, 11] suggest that the techniques of this paper

scale smoothly to richer languages and more involved error-

compensating semantics and repairs. The hard part, how-

ever, is to come up with error-compensating semantics real-

istically capturing programmer intentions behind mistakes

and with matching repairs.

Mechanical program repair is sometimes considered

harmful because the programmer may feel uneasy about

what the repair does, because one cannot know the “real”

intended meaning of broken programs, or because the error-

compensating semantics may turn out to be a faulty descrip-

tion of a known intended meaning. While these are valid ob-

jections, our position is that manual or heuristic alternatives

can only offer less. An error-compensating semantics can

indeed be wrong, but the repairs can be passed to the pro-

grammer to inspect and approve before they are deployed

(cf. refactoring). In the end, such manual testing is the only

way to check whether the compensation adopted is right.

Moreover, we can define different error-compensating se-

mantics that justify different repair strategies for the same

class of errors, and again submit their potentially different

outcomes for approval. Importantly, the error-compensating

semantics are the only ingredient that can fail in our other-

wise mathematically provably sound approach. This isola-

tion of faults is valuable by itself.

2 Repairing file access errors

We introduce our approach on a simple language extend-

ing While with statements for opening, closing and reading

from (but not writing to) files. Our aim here is to recon-

struct the intent of programmers who have made mistakes

in the file handling. The arithmetic expressions a ∈ AExp,

boolean expressions b ∈ BExp and statements s ∈ Stm
are defined over supplies of program variables x ∈ Var and

file names f ∈ F, and the integer numerals n ∈ Z:

a ::= x | n | a0 + a1 | . . .
b ::= a0 = a1 | . . . | tt | ff | ¬b | . . .
s ::= x := a | skip | s0; s1 | if b then st else sf |

while b do st | open(f) | close(f) | read(f, x)

We consider a simple model for file access. A file must

be opened before it can be read and closed before the pro-

gram terminates; to simplify our presentation, we ignore

end-of-file errors. Opening a file sets its pointer (i.e., the

line to be read) to zero. Reading a value from the current

line increases the file pointer by one.

Error-admitting semantics, safety type system and its
soundness The precise semantics of the language is de-

scribed in terms of states. A state is a pair of a store σ ∈
Var −→ Z and a file status table ρ ∈ F −→ {c} + {o(n) |
n ∈ N} that records, for every file, whether it is closed (c)

or open (o) and for open files also the pointer value. The file

contents are modeled by a map φ ∈ F × N −→ Z from file

names and pointer values to integers. For programs with an

erroneous file access, the normal evaluation rules as given

in Figure 1 allow no derivation of a final state; instead, there

is a specific judgement form for abnormal evaluations. The

semantics is thus error-admitting: rather than trying to con-

tinue past the error, it aborts.

We can easily construct tools that statically check

whether a program is safe (cannot evaluate abnormally),

using, e.g., the type system in Figure 2, describing a sim-

ple forward analysis. In this type system, a type is a map

d ∈ F → {c, o} judging every file closed or open. Types

can be interpreted as properties of states by

o(n) |= o c |= c

∀f ∈ F. ρ(f) |= d(f)
(σ, ρ) |= d

Under this interpretation, the type system is sound in the

classical sense that well-typed programs do not go wrong,

including safety:

Theorem 1 If s : d −→ d′ in the safety type system, then (i)
if (σ, ρ) |= d and (σ, ρ) �s� (σ′, ρ′) in the error-admitting
semantics, then (σ′, ρ′) |= d′, and (ii) it cannot simulta-
neously be that (σ, ρ) |= d and (σ, ρ) �s�� in the error-
admitting semantics.

This type system is so simple that principal type infer-

ence involves no fixed-point computation. But it is also

crude and rejects many safe programs; to reason about

safety precisely, a dedicated Hoare logic could be used [5].

From safety certification to repair We are interested in

more than safety checking, namely in repairing broken pro-

grams. For file access, it is reasonable to require a repair to

satisfy the following conditions. The non-erroneous evalu-

ations of the given program should be preserved. The re-

paired program should be safe. Two reads in the given pro-

gram from the same file with no close or open statement

in between should be kept in the same session (so no open

or close can be inserted between them). In the opposite di-

rection, any close or open statement should be treated as

166

ρ(f) = c

σ, ρ �open(f)� σ, ρ[f �→ o(0)]

ρ(f) = o(n)

σ, ρ �close(f)� σ, ρ[f �→ c]

ρ(f) = o(n)

σ, ρ �read(f, x)� σ[x �→ φ(f, o(n))], ρ[f �→ o(n + 1)]

σ, ρ �x := a� σ[x �→ �a�σ], ρ σ, ρ �skip� σ, ρ

σ, ρ �s0� σ′′, ρ′′ σ′′, ρ′′ �s1� σ′, ρ′

σ, ρ �s0; s1� σ′, ρ′

σ |= b σ, ρ �st� σ′, ρ′

σ, ρ �if b then st else sf� σ′, ρ′
σ �|= b σ, ρ �sf� σ′, ρ′

σ, ρ �if b then st else sf� σ′, ρ′

σ |= b σ, ρ �st� σ′′, ρ′′ σ′′, ρ′′ �while b do st� σ′, ρ′

σ, ρ �while b do st� σ′, ρ′
σ �|= b

σ, ρ �while b do st� σ, ρ

ρ(f) = o(n)

σ, ρ �open(f)��

ρ(f) = c

σ, ρ �close(f)��

ρ(f) = c

σ, ρ �read(f, x)��

σ, ρ �s0��

σ, ρ �s0; s1��

σ, ρ �s0� σ′′, ρ′′ σ′′, ρ′′ �s1��

σ, ρ �s0; s1��

σ |= b σ, ρ �st��

σ, ρ �if b then st else sf��

σ �|= b σ, ρ �sf��

σ, ρ �if b then st else sf��

σ |= b σ, ρ �st��

σ, ρ �while b do st��

σ |= b σ, ρ �st� σ′′, ρ′′ σ′′, ρ′′ �while b do st��

σ, ρ �while b do st��

Figure 1. Error-admitting semantics for file access

d(f) = c

open(f) : d −→ d[f �→ o]

d(f) = o

close(f) : d −→ d[f �→ c]

d(f) = o

read(f, x) : d −→ d

x := a : d −→ d skip : d −→ d

s0 : d −→ d′′ s1 : d′′ −→ d

s0; s1 : d −→ d′
st : d −→ d′ sf : d −→ d′

if b then st else sf : d −→ d′
st : d −→ d

while b do st : d −→ d

Figure 2. Safety type system for file access

a session breaker. Finally, for the sake of determinism of

the repair, any necessary new opens and closes should be

placed so that files are opened as late and closed as early

as possible. Different criteria are conceivable too, but we

commit to those above.

We will see that a repair meeting our chosen criteria is

achievable by first removing all open and close statements

from the given program and then inserting some open and

close statements, generally elsewhere, to render all read

statements safe and belonging appropriately into the same

or different sessions, with minimal session lengths. Con-

sider, e.g., the broken program on the left and its repaired

version on the right:

read(f, x); open(f); read(f, x);
read(f, y); read(f, y); close(f) :
open(f); ↪→
read(f, z); open(f); read(f, z); close(f);
w := x − z; w := x − z
close(f)

The repair has added the single pair of necessary open and

close statements around the first two read statements, which

must belong to the same session. The third read is kept in

a different session, by reinsertion of the removed original

open statement, thus ensuring that z still receives the first

value in the file. The removed close is reinserted before the

assignment, thus shortening this session (which was already

safe in the original program).

Repair of branching programs is more subtle. In general,

we must track the possible past and future file reads for all

program points. If a file is certainly, i.e., for all incoming

paths, unread immediately before a read statement, then the

read must be preceded by an open. If there are definitely

no further future reads, then the file must be closed imme-

diately after the read. Consider this example:

if b then if b then
read(f, x) open(f); read(f, x)

else ↪→ else
x := x + 1; x := x + 1;

open(f);
read(f, y) read(f, y); close(f)

Opening the file before the if-statement conflicts with the

goal of minimizing session lengths. Hence, the repair in-

serts the open statement as late as possible, right before the

read in the then-branch. But it also has to append an open

statement to the else-branch, to ensure that the second read

is safe, if that branch is taken. This “edge-splitting” inser-

tion is the only option as, at the end of the if-statement, there

is a past read on an incoming path and a future read on the

outgoing path. Since there is no intervening open or close

statement between the two read statements, they belong to

the same session and the file must be open at this point.

167

It is important to realize that sometimes sessions with-

out any reads must be introduced to make a program safe.

Consider this variation of the previous example:

if b then if b then
read(f, x) open(f); read(f, x)

else else
x := x + 1; x := x + 1;

open(f);
if b′ then ↪→ if b′ then

close(f);
y := y + 1 y := y + 1

else else
read(f, y) read(f, y); close(f)

To ensure that the file is open between the two if-statements

(so the two reads can be in the same session), an open is

inserted at the end of the false branch of the first if-statement

and a close at the beginning of the true branch of the second

if-statement. As a consequence, if b is true but b′ is false,

the file is opened and then closed without reading from it.

We have thus witnessed that our repair will be an

analysis-based transformation. Moreover, it not only re-

pairs broken programs, but optimizes safe programs by min-

imizing session lengths, at no additional cost. The analysis

and transformation are similar to partial redundancy elim-

ination in the version of Paleri et al. [10], based on partial

availability and partial anticipability made conditional on

the disjunction on total availability and anticipability. In-

serted open statements play the role of inserted assignments

to auxiliary variables, while inserted close statements cor-

respond to inserted discardings of auxiliary variables.

Repair type system Finding possible past reads from the

files requires a forward may analysis and finding possible

future reads requires a backward may analysis. We describe

these two analyses in a single a type system. A type is a pair

(d, e), where d, e ∈ F → {r, u} are maps from file names

to tokens r, u. The token r means possibly read in the past

(and not closed or opened after) resp. in the future (and not

opened or closed before), depending on the component d or

e. The other token u stands for certainly unread. A typing

judgement takes the form s : (d, e) −→ (d′, e′) and asserts

that, if all files read in the past before a run of s are mapped

to r by d, then all files read in the past after this run are

assigned r by d′, and, if all files read in the future after a

run of s are r according to e′, then before it they are r in e.

The subtyping and typing rules are in Figure 3 (ignore the

grayed-out part for a moment). The statements changing

the r/u values are open, close and read. Since we take both

open and close to break sessions, both set the file to u in

both the past and future—thus the same typing rules. Not

surprisingly, a read statement marks the file as r in both the

past and the future. To type if- and while-statements, one

may need the subsumption rule (cf. the consequence rule of

Hoare logics) to fit the types. In fact, read statements can be

treated similarly (together with subsumption, the bracketed

simplified rule recovers the more complex read rule).

The grayed-out parts in Figure 3 define the transforma-

tion based on the two analyses. A typing judgement with

a transformation component has the form s : (d, e) −→
(d′, e′) ↪→ s∗, stating that, based on its type, the program

s can be rewritten to s∗. The open and close rules replace

all open and close statements with skips, since the repair in-

serts new opens and closes. In particular, opens and closes

already placed optimally are essentially restored. The trans-

formation rules for read are also straightforward—the first

read from a file (i.e., the case when the file is marked unread

in the past pretype) in a session is preceded with a file open,

and the last read (i.e., the case where the file is unread in the

posttype) with a close statement. Edge-splitting insertions

of opens and closes at new nodes of the control-flow graph

are carried out by the subsumption rule together with the

subtyping rules. At a subsumption, the subtypings used dic-

tate sequences of file opens and closes to be inserted before

and after the transformed version of the given statement.

This is the purpose of having a transformation component

also in the subtyping rules: any derivable subtyping defines

a sequence of open and close statements. An overarching

idea behind the transformation rules is to assume and guar-

antee that, at the points in the given program where a file f
is typed (r, r) (i.e., the point is between two possible reads

from f unintervened by closes or opens of f), this file is

open in the repaired program; at the points typed otherwise,

the repaired program should have the file closed.

An example type and transformation derivation is given

in Figure 4. The subsumption rule is applied to the else-

branch of the if-statement, where the type of f is weakened

from (u, r) to (r, r) at the end. Intuitively, f is now assumed

to have been read before, and thus all future reads can as-

sume the file to be open. For this reason, we have to intro-

duce an open(f) statement to guarantee that the file actually
is open. This is exactly what the subtyping rule gives us.

Soundness wrt. an error-compensating semantics A re-

pair should not only transform a given program into a safe

program: the repaired program should inherit the normal

evaluations of the given program. But what is more, also

the abnormal evaluations of the given program should not

be turned into arbitrary normal evaluations of the repaired

program. So what is our intent for abnormal evaluations?

We have in fact informally specified it by the conditions on

the repair we laid out. Rigorously, it can be expressed by

the requirement that the repair must respect a non-standard,

error-compensating semantics of our language. Essentially,

we said that the only meaning we give to open and close

statements in a broken program is breaking a possibly on-

168

(u, r) ≤ (r, r) ↪→f open(f) (r, r) ≤ (r, u) ↪→f close(f) (m, m) ≤ (m, m) ↪→f skip (u, m) ≤ (m′, u) ↪→f skip

∀f ∈ F. (d(f), e(f)) ≤ (d′(f), e′(f)) ↪→f s(f)

(d, e) ≤ (d′, e′) ↪→ [s(f) | f ∈ F]

(d, e) ≤ (d0, e0) ↪→ spre s : (d0, e0) −→ (d′
0, e

′
0) ↪→ s∗ (d′

0, e
′
0) ≤ (d′, e′) ↪→ spost

s : (d, e) −→ (d′, e′) ↪→ spre; s∗; spost

x := a : (d, e) −→ (d, e) ↪→ x := a

skip : (d, e) −→ (d, e) ↪→ skip

s0 : (d, e) −→ (d′′, e′′) ↪→ s′0 s1 : (d, e) −→ (d′, e′) ↪→ s′1

s0; s1 : (d, e) −→ (d′, e′) ↪→ s′0; s
′
1

st : (d, e) −→ (d′, e′) ↪→ s′t sf : (d, e) −→ (d′, e′) ↪→ s′f

if b then st else sf : (d, e) −→ (d′, e′) ↪→ if b then s′t else s′f

st : (d, e) −→ (d, e) ↪→ s′t

while b do st : (d, e) −→ (d, e) ↪→ s′t

open(f) : (d, e[f �→ u]) −→ (d[f �→ u], e) ↪→ skip close(f) : (d, e[f �→ u]) −→ (d[f �→ u], e) ↪→ skip

read(f, x) : (d, e[f �→ r]) −→ (d[f �→ r], e)

↪→ [open(f) | d(f) = u]; read(f, x); [close(f) | e(f) = u]

"
d(f) = e(f) = r

read(f, x) : (d, e) −→ (d, e) ↪→ read(f, x)

#

Figure 3. Repair type system for file access

read(f, x) : (u, r) −→ (r, r)
↪→ open(f); read(f, x)

x := 0 : (u, r) −→ (u, r) ↪→ x := 0 (u, r) ≤ (r, r) ↪→ open(f)

x := 0 : (u, r) −→ (r, r) ↪→ x := 0; open(f)

if b then read(f, x) else x := 0 : (u, r) −→ (r, r)
↪→ if b then (open(f); read(f, x)) else (x := 0; open(f))

read(f, y) : (r, r) −→ (r, u)
↪→ read(f, y); close(f)

if b then read(f, x) else x := 0; read(f, y) : (u, r) −→ (r, u)
↪→ if b then (open(f); read(f, x)) else (x := 0; open(f)); read(f, y); close(f)

Figure 4. Example repair type and transformation derivation for file access

going session, practically amounting to resetting the file

pointer. Hence we can take the intended meaning of bro-

ken programs to be given by a semantics where all files are

always open and both opens and closes just reset the file

pointer. Differently from the error-admitting semantics, a

file status table in this semantics is thus simply a mapping

ρ : F −→ N from file names to natural numbers. The rules

for file access statements are in Figure 5 (for the other state-

ments they remain unchanged).

To be able to align the runs of the given and the repaired

program in the error-compensating resp. error-admitting se-

mantics, we introduce a repair-type-indexed similarity rela-
tion between their states by the following rules:

n ∼(r,r) o(n) 0 ∼(u,r) c n ∼(m,u) c

∀f ∈ F. ρ(f) ∼(d,e) ρ∗(f)

(σ, ρ) ∼(d,e) (σ, ρ∗)

In effect, these rules reflect the idea behind the transfor-

mation rules. For a point in the given program, the only

type corresponding to an open file in the repaired program

is (r, r), signifying possible reads in both the past and future

in the given program. In this case, the file pointers in both

of the related states have to be equal. For all other types,

the file should be closed in the repaired program, since files

are opened (resp. closed) only immediately before reads or

control-flow joins (resp. after reads or control-flow forks).

For (u, r), in the given program we have that the file is un-

read in the past, but will be read from in the future (with

no prior open or close resetting the file pointer), so the file

pointer must already be 0, whereas in the repaired program

the file is closed. A type (m, u) indicates that a file is not

read in the future before an open or close. In this situation

the file pointer can have any value, as it has no chance to

affect the final state.

We now are equipped to prove the repair type system

mathematically sound by induction on the type derivation.

Theorem 2 If s : (d, e) −→ (d′, e′) ↪→ s∗ in the repair
type system, then
(i) if (σ, ρ) ∼(d,e) (σ∗, ρ∗) and (σ, ρ) �s� (σ′, ρ′) in
the error-compensating semantics, then there must exist

169

σ, ρ �open(f)� σ, ρ[f �→ 0] σ, ρ �close(f)� σ, ρ[f �→ 0] σ, ρ �read(f, x)� σ[x �→ φ(f, ρ(f))], ρ[f �→ ρ(f) + 1]

Figure 5. Error-compensating semantics for file access

a state (σ′
∗, ρ

′
∗) such that (σ′, ρ′) ∼(d′,e′) (σ′

∗, ρ
′
∗) and

(σ∗, ρ∗) �s∗� (σ′
∗, ρ

′
∗) in the error-admitting semantics;

(ii) if (σ, ρ) ∼(d,e) (σ∗, ρ∗) and (σ∗, ρ∗) �s∗� (σ′
∗, ρ

′
∗) in

the error-admitting semantics, then there must exist a state
(σ′, ρ′) such that (σ′, ρ′) ∼(d′,e′) (σ′

∗, ρ
′
∗) and (σ, ρ) �s�

(σ′, ρ′) in the error-compensating semantics;
(iii) it cannot simultaneously be that (σ, ρ) ∼(d,e) (σ∗, ρ∗)
and (σ∗, ρ∗) �s∗�� in the error-admitting semantics;
(iv) s∗ : (d, e)# −→ (d′, e′)# where (r, r)# =df o,
(m, u)# =df c, (u,m)# =df c and (d, e)#(f) =df

(d(f), e(f))# .

Here (i) and (ii) express semantic equivalence for normal

evaluations of the given and repaired program, (iii) states

semantic safety of the repaired program and (iv) states that

this safety is also detected by our safety type system.

It is also important that the repair does not change the se-

mantics of safe programs. This only requires that the error-

admitting and error-compensating semantics agree on the

programs typable in the safety type system. To state this,

we define a safety-type-indexed similarity relation between

the states of the two semantics by

o(n) ≈o n c ≈c 0
∀f ∈ F. ρ(f) ≈d ρ∗(f)

(σ, ρ) ≈d (σ, ρ∗)

We can now strengthen the soundness of the safety type sys-

tem (Theorem 1) as follows.

Theorem 3 If s : d −→ d′ in the safety type system, then
(i) if (σ, ρ) ≈d (σ∗, ρ∗) and (σ, ρ) �s� (σ′, ρ′) in the error-
admitting semantics, then there must exist a state (σ′

∗, ρ
′
∗)

such that (σ′, ρ′) ≈d′ (σ′
∗, ρ

′
∗) and (σ∗, ρ∗) �s� (σ′

∗, ρ
′
∗)

in the error-compensating semantics;
(ii) if (σ, ρ) ≈d (σ∗, ρ∗) and (σ∗, ρ∗) �s� (σ′

∗, ρ
′
∗) in the

error-compensating semantics, then there must exist a state
(σ′, ρ′) such that (σ′, ρ′) ≈d′ (σ′

∗, ρ
′
∗) and (σ, ρ) �s�

(σ′, ρ′) in the error-admitting semantics.

On programs typable in the safety type system, the re-

pair can also be shown improving: it reduces (or, more pre-

cisely, does not grow) the number and lengths of file ses-

sions. This can be done with the help of an instrumented

error-admitting semantics that keeps track of the number of

times each file is opened and how long it stays open.

3 Repairing queue over/underflows

We now look at a different example, over/underflows of a

bounded queue. Here the aim of repair is not to reconstruct

the intent of programmers that make mistakes, but to expose

how a particular implementation may deal with them, with-

out warning the programmers. We introduce two boolean

expression and two statement forms:

b ::= . . . | full | emp
s ::= . . . | enq(a) | deq(x)

full and emp test the queue for fullness and emptiness,

enq(a) appends the value of a to the queue, and deq(x)
removes the head value of the queue, assigning it to x.

Error-admitting semantics, safety type system and its
soundness A state in the standard, error-admitting seman-

tics is a pair of a store σ ∈ Var −→ Z and a queue content

q ∈ Z
∗, with |q| ≤ N for some fixed N ∈ N. We model the

queue via the list datatype. We write X∗ for lists over a set

X , [] for the empty list, x : xs for the list with head x and

tail xs , xs++ys for the concatenation of lists xs and ys , and

|q| for the length of the list q. The rules for the enqueue and

dequeue statements are given in Figure 6 (top); the rules for

the other statements are similar to those given in Figure 1,

as none of them affect the queue. Under this semantics, a

program raises an error when an element is added to a queue

that is full or a dequeue is attempted from an empty queue.

It is easy to see that safety can be guaranteed by a simple

type system for interval analysis of the queue length. The

types are pairs of a lower and upper bound on the queue

length: lo, hi ∈ [0, N], lo ≤ hi . A typing judgement in the

form s : [lo, hi] −→ [lo′, hi ′] states that, if before running s
the queue length is between lo and hi , then after running s,

it is between lo′ and hi ′. The rules are in Figure 6 (bottom);

the soundness result is analogous to Theorem 1.

Error-compensating semantics, repair type system and
its soundness We can imagine an implementation of the

queue that skips enqueues to a full queue and dequeues

a default value 0 from an empty queue, thus never abort-

ing and defining an ad-hoc error-compensating semantics.

Repairing a program soundly with respect to this error-

compensating semantics makes the program portable from

that particular implementation to any implementation that

agrees with the normal evaluations of the error-admitting

semantics. This is exactly what we will study now.

The states of the error-compensating semantics are the

same as those of the error-admitting semantics and the rules

are given in Figure 7 (top). The simplest sound repair would

guard all enqueue and dequeue statements by fullness and

emptiness tests, but we can obviously do better, again by in-

terval analysis. The types of the repair type system are the

same as those of the safety type system. The rules appear in

170

|q| < N

σ, q �enq(a)� σ, q++[�a�σ] σ, v : q �deq(x)� σ[x �→ v], q

|q| = N

σ, q �enq(a)�� σ, [] �deq(x)��

lo′ ≤ lo hi ≤ hi ′

[lo, hi] ≤ [lo′, hi ′]

[lo, hi] ≤ [lo0, hi0] s : [lo0, hi0] −→ [lo′
0, hi

′
0] [lo′

0, hi
′
0] ≤ [lo′, hi ′]

s : [lo, hi] −→ [lo′, hi ′]

hi < N

enq(a) : [lo, hi] −→ [lo + 1, hi + 1]

0 < lo

deq(x) : [lo, hi] −→ [lo − 1, hi − 1]

Figure 6. Error-admitting semantics (top) and safety type system (bottom) for queue operations

|q| < N

σ, q �enq(a)� σ, q++[�a�σ]

|q| = N

σ, q �enq(a)� σ, q σ, v : q �deq(x)� σ[x �→ v], q σ, [] �deq(x)� σ[x �→ 0], []

lo′ ≤ lo hi ≤ hi ′

[lo, hi] ≤ [lo′, hi ′]

[lo0, hi0] ≤ [lo, hi] s : [lo, hi] −→ [lo′, hi ′] ↪→ s∗ [lo′, hi ′] ≤ [lo′
0, hi

′
0]

s : [lo0, hi0] −→ [lo′
0, hi

′
0] ↪→ s∗

hi < N

enq(a) : [lo, hi] −→ [lo + 1, hi + 1]

↪→ enq(a)

enq(a) : [N, N] −→ [N, N]

↪→ skip

lo < N

enq(a) : [lo, N] −→ [lo + 1, N]

↪→ if ¬full then enq(a) else skip

0 < lo

deq(x) : [lo, hi] −→ [lo − 1, hi − 1]

↪→ deq(x)

deq(x) : [0, 0] −→ [0, 0]

↪→ x := 0

0 < hi

deq(x) : [0, hi] −→ [0, hi − 1]

↪→ if ¬emp then deq(x) else x := 0

Figure 7. Error-compensating semantics (top) and repair type system (bottom) for queue operations

Figure 7 (bottom) and should be straightforward. The trans-

formation component in the type system covers three dis-

tinct cases for both enqueuing and dequeuing. If we know

from the type that the queue is not full, the enqueue state-

ment remains unchanged. If we know for certain that the

queue is full (the bounds are [N,N]), the enqueue state-

ment is removed. If the queue may be full (the case where

the upper bound is N , but the lower bound is smaller), the

statement is replaced with a conditional checking the queue

size. The cases for dequeuing are handled similarly.

Again the repair is sound for a relational interpretation

of types. Two states (of the error-compensating and error-

admitting semantics) are similar at a type, if they are equal

and the queue length is within the given bounds:

lo ≤ |q| ≤ hi
(σ, q) ∼(lo,hi) (σ, q).

The soundness result is analogous to that for the repair type

system for file access (Theorem 2): the given and repaired

program agree on the normal evaluations in their respective

semantics and the repaired program is safe under the error-

admitting semantics.

Hoare logics We now show how the repair type system

can be used for mechanical transformation of program cor-

rectness proofs—massaging Hoare logic proofs about given

programs into Hoare logic proofs about repaired programs

and vice versa.

Both the error-admitting and error-compensating seman-

tics have logical counterparts in Hoare logics. In both cases

we take the assertion language to have an extralogical con-

stant q to refer to the current queue content. In the Hoare

logic for the error-admitting semantics, the rules for en-

queue and dequeue are

{|q| < N ∧ Q[q++[a]/q]} enq(a) {Q}

{∃v, u. q = v : u ∧ Q[v, u/x, q]} deq(x) {Q}
In both rules, the precondition guarantees that the state-

ment does not abort.1 In the Hoare logic for the error-

compensating semantics, the rules for enqueue and dequeue

take the form

{(|q| < N ∧ Q[q++[a]/q]) ∨ (|q| = N ∧ Q)} enq(a) {Q}

{ (∃v, u. q = v : u ∧ Q[v, u/x, q])
∨ (q = [] ∧ Q[0/x]) } deq(x) {Q}

1Note that two flavors of logic are possible, depending on how we wish

to treat errors. We consider a triple valid if (i) if the program is run from

a state satisfying the precondition and terminates normally, the final state

satisfies the postcondition, and (ii) the program cannot abort. Alternatively,

validity can be taken to mean the first conjunct only, guaranteeing nothing

about broken programs. This leads to a different logic.

171

They reflect the fact that on a full queue, enqueue is equiv-

alent to skip, and dequeue on an empty queue is equivalent

to an assignment. Both logics are sound and relatively com-

plete (relative wrt. the unachievable completeness of arith-

metic) wrt. the respective semantics.

Correctness proof transformability Now, correspond-

ing to a similarity relation between two states at a type, we

define two assertion translations depending on the type. We

set P |[lo,hi] =df P |[lo,hi] =df lo ≤ |q| ≤ hi ∧P , so the two

translations from the assertions of the Hoare logic for the

error-compensating semantics to those of the Hoare logic

for the error-admitting semantics and back are in fact iden-

tical. This happens because the two semantics rely on the

same notion of a state and the similarity relation is symmet-

ric. In general, e.g., in file access repair, this is not the case

and there would be two different translations.

The following Hoare logic proof transformability result

is provable either from the soundness of the repair type sys-

tem and soundness and completeness of the Hoare logics or

directly by induction on the type derivation.

Theorem 4 If s : [lo, hi] −→ [lo′, hi ′] ↪→ s∗ in the repair
type system, then
(i) If {P} s {Q} in the Hoare logic for the error-
compensating semantics, then {P |[lo,hi]} s∗ {Q|[lo′,hi′]} in
the Hoare logic for the error-admitting semantics,
(ii) If {P} s∗ {Q} in the Hoare logic for the error-admitting
semantics, {P |[lo,hi]} s {Q|[lo′,hi′]} in the Hoare logic for
the error-compensating semantics.

The direct proof for this theorem gives us mechanical

correctness proof transformations: type-derivation directed

transformations of proofs between the two Hoare logics.

As a small example, for N =df 1 and the queue initially

containing one element, the repair type system derives s :
[1, 1] −→ [0, 0] ↪→ s∗ for s =df enq(x); deq(y); deq(z)
and s∗ =df deq(y); z := 0. The Hoare logic for the error-

admitting semantics proves {q = u++[v]} s∗ {y = v ∧ z =
0}, so the Hoare logic for the error-compensating semantics

proves {|q| = 1∧ q = u++[v]} s {|q| = 0∧y = v∧z = 0}.

4 Related work

The standard approach to error repair is to have programs

contain dedicated code for recovering from errors. Often,

checkpointing and rollback mechanisms are employed to

back up to a prior consistent state. Writing recovery code

requires dedicated language constructs such as exception

handling or recovery blocks [8]. This extra code can be

tailored to the problem at hand, but needs to be crafted

manually, so the approach is usually applied only to safety-

critical or infrastructure software such as operating systems.

It is difficult to give useful guarantees about recoveries and

at any rate this requires reasoning about the particular re-

covery code written; moreover, run-time recovery can cause

significant computational overheads. Micro-rebooting [2]

eliminates the recovery programs and restarts only those

parts of an application that have been affected by a runtime

error, but this does not help against the re-occurrence of

deterministic errors. In the Bristlecone programming lan-

guage [3], a system is decomposed into tasks that can be

executed and restarted independently as constrained by a

system organization description. The recovery technique

shares similarities with the assertion-based repair of data

structures [4, 6] where the user formulates invariants for the

data structures used. When a violation is detected, muta-

tion of the corrupted data structure back into a good state is

attempted based on hard-coded heuristics.

Our approach is fundamentally different in that it neither

requires manual programming of run-time recovery using

dedicated language constructs nor relies on a hard-coded

heuristic run-time recovery mechanism. Instead, we use a

compile-time program transformation, devised once and for

all for a given kind of errors, with repair results rigorously

controlled by a semantic guarantee. Our technique com-

pares well to automatic datatype coercion (existing since

Algol-68) where the compiler inserts conversion functions

to repair wrong-operand-type errors. But this basic repair

is driven by standard datatype information rather than by a

dedicated repair type system.

The type-systematic approach to program optimization

as used here (incl. mechanical transformability of correct-

ness proofs) was introduced in our work [12, 11]. To as-

sess the scalability of the method to complex and subtle

optimizations, we applied it in particular to partial redun-

dancy elimination (PRE) [14], an optimization reducing the

number of times that each expression is evaluated. The best

known modern version of the optimization is due to Knoop

et al. [9]. The most advanced and well-motivated are those

by Paleri et al. [10] and Xue and Knoop [15]. The file access

repair is much inspired by Paleri et al.’s version of PRE rely-

ing on partial availability and partial anticipability analyses

made conditional on the disjunction of total availability and

anticipability (this is also the version we treated in [14]).

Similarity-relational notions of validity of analyses and op-

timizations were pioneered in Benton’s work [1] on rela-

tional Hoare logics for reasoning about pairs of programs.

Frade, Saabas and Uustalu [7] showed that analyses and

optimizations described as type systems should be under-

stood as applied versions of more foundational Hoare logics

for reasoning about the same abstract semantics as the type

system precisely rather than in terms of approximations or

about more concrete computation trace or tree semantics.

172

Denney and Fischer [5] advocated certification of adherence

to a policy in the Hoare logic for an instrumented semantics

monitoring this policy.

5 Conclusions and future work

We have demonstrated a novel approach to mechani-

cal, compile-time program repair. Its strengths derive from

the firm semantic footing. As soon as the intended non-

erroneous meaning of broken programs of a language has

been cemented in the form of an error-compensating se-

mantics (which is a psychological engineering issue), build-

ing program repair into a compiler reduces to identifying a

sound program analysis and transformation (a mathemati-

cal problem). The challenge is to find a suitable program

analysis with a suitable semantical interpretation. This

can be subtle, as the file access example illustrated. As a

reward, the type-systematic method, emphasizing general

valid analyses over strongest analyses, makes soundness

proofs relatively straightforward checks that also enjoy a

useful logical counterpart in mechanical transformability of

program correctness proofs.

One possible extension of our method beyond literal re-

pair is enforcing of coding conventions. Here one would

take the standard semantics of a language to be the error-

compensating semantics, but as the error-admitting seman-

tics use an instrumented version that monitors adherence

to some coding conventions and aborts as soon as a viola-

tion is detected. A strong salient point is that the issue of

a possibly wrong error-compensating semantics vanishes:

the repair will be an uncontroversial refactoring of a pro-

gram into a fully equivalent one meeting the coding conven-

tions. As a variation on the theme of portability enforcing

(cf. queue over/underflow repair), it can be meaningful to

use an idealized semantics (rather than the “intersection” of

all sensible implementations) as the error-admitting seman-

tics. We could, e.g., transform programs relying on modular

arithmetic for a certain base to programs behaving equiva-

lently under ideal arithmetic within an interval (raising an

error when an operation yields a value outside). The repair

would augment programs with mod operations, but as few

as necessary. Now it is useful to derive correctness proofs

for given programs from those of transformed programs: a

correctness proof is produced manually for the transformed

program, assuming ideal arithmetic; the mechanical proof

transformation will complete it with boilerplate modular

reasoning.

Acknowledgements We are thankful to our referees for

useful remarks. B. Fischer was supported by EPSRC grant

no. EP/F052669/1. A. Saabas and T. Uustalu were supported by

the Estonian Science Foundation grant no. 6940 and the EU FP6

IST integrated project no. 15905 MOBIUS.

References

[1] N. Benton. Simple relational correctness proofs for static

analyses and program transformations. In Proc. of 31st
ACM SIGPLAN-SIGACT Symp. on Principles of Program-
ming Languages, POPL 2004, pp. 14–25. ACM Press, 2004.

[2] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and

A. Fox. Microreboot—a technique for cheap recovery. In

Proc. of 6th Symp. on Operating System Design and Imple-
mentation, OSDI 2004, pp. 31–44. Usenix Assoc., 2004.

[3] B. Demsky and A. Dash. Bristlecone: A language for ro-

bust software systems. In J. Vitek, ed., Proc. of 22nd Europ.
Conf. on Object-Oriented Program., ECOOP 2008, Lect.
Notes in Comput. Sci., v. 5142, pp. 490–515. Springer, 2008

[4] B. Demsky and M. C. Rinard. Goal-directed reasoning for

specification-based data structure repair. IEEE Trans. on
Softw. Engin., 32(12):931–951, 2006.

[5] E. Denney and B. Fischer. Correctness of source-level safety

policies. In K. Araki, S. Gnesi, and D. Mandrioli, eds., Proc.
of 2003 Symp. of Formal Methods Europe, FME 2003, Lect.
Notes in Comput. Sci., v. 2805, pp. 894–913. Springer, 2003.

[6] B. Elkarablieh, I. Garcia, Y. L. Suen, and S. Khurshid.

Assertion-based repair of complex datastructures. In Proc.
of 22nd IEEE/ACM Int. Conf. on Automated Software Engi-
neering, pp. 64–73. ACM Press, 2007.

[7] M. J. Frade, A. Saabas, and T. Uustalu. Foundational certifi-

cation of data-flow analyses. In Proc. of 1st IEEE and IFIP
Int. Symp. on Theoretical Aspects of Software Engineering,
TASE 2007, pp. 107-116. IEEE CS Press, 2007.

[8] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Ran-

dell. A program structure for error detection and recovery.

In Proc. of Symp. on Operating Systems, Lect. Notes in Com-
put. Sci., v. 16, pp. 171–187. Springer, 1974.

[9] J. Knoop, O. Rüthing, and B. Steffen. Optimal code motion:

theory and practice. ACM Trans. on Program. Lang and
Syst., 16(4):1117-1155, 1994.

[10] V. K. Paleri, Y. N. Srikant, and P. Shankar. Partial redun-

dancy elimination: a simple, pragmatic, and provably cor-

rect algorithm. Sci. of Comput. Program., 48(1):1–20, 2003.
[11] A. Saabas. Logics for low-level code and proof-preserving

program transformations (PhD thesis), Thesis on Inform.
and Syst. Engin. C43. Tallinn Univ. of Techn., 2008.

[12] A. Saabas and T. Uustalu. Program and proof optimizations

with type systems. J. of Logic and Algebr. Program., 77(1–

2):131–154, 2008.
[13] A. Saabas and T. Uustalu. Type systems for optimizing

stack-based code. In M. Huisman and F. Spoto, eds., Proc.
of 2nd Wksh. on Bytecode Semantics, Verification, Analy-
sis and Transformation, Bytecode 2007, Electron. Notes in
Theor. Comput. Sci., v. 190(1), pp. 103–119. Elsevier, 2007.

[14] A. Saabas and T. Uustalu. Proof optimization for partial

redundancy elimination. J. of Logic and Algebr. Program.,
to appear. Conf. version in Proc. of 2008 ACM SIGPLAN
Wksh. on Partial Evaluation and Semantics-Based Program
Manipulation, PEPM 2008 , pp. 91–101. ACM Press, 2008.

[15] J. Xue and J. Knoop. A fresh look at PRE as a maximum

flow problem. In A. Mycroft and A. Zeller, eds., Proc. of
15th Int. Conf. on Compiler Construction, CC 2006, Lect.
Notes in Comput. Sci., v. 3923, pp. 139–154. Springer, 2006.

173

