The Modula-2 Proving System MOPS

Th. Kaiser, B. Fischer, W. Struckmann

Informatik-Bericht Nr. 2000-01
Juni 2000

Copyright (© 2000 Institut fiir Software
Abteilung Programmierung
Technische Universitat Braunschweig
Gauflstraie 11
D-38092 Braunschweig/Germany

The Modula-2 Proving System MOPS

Th. Kaiser, B. Fischer, W. Struckmann
Institut fir Software
Abteilung Programmierung
Technische Universitdt Braunschweig
Gaufistrafie 11
D-38092 Braunschweig/Germany
struck@ips.cs.tu-bs.de

Abstract

In this report we describe the MOdula-2 Proving System MOPS. It is a Hoare-calculus based
program verification system for a large subset of the programming language Modula-2 which
uses VDM-SL as specification language. The main goal of MOPS is to demonstrate the
feasibility and viability of a Hoare-style verification system for a real imperative programming
language, including pointers, arrays, and other data structures. MOPS also provides support
for the modular and partial verification of large systems.

We demonstrate MOPS with some example verifications. While the first two examples are
rather small, the third one consists of a series of increasingly sophisticated quicksort-versions
which include the median-of-three pivot selection strategy as well as the use of selection sort
and bubblesort for small subarrays.

Contents

Contents
1. Introduction 2
2. Calculus 3
3. Specification and verification 4
3.1. Specification of elementary control structures 4
3.2. Specification of array operations 5
3.3. Specification of record operations Lo 6
3.4. Specification of pointer operations 7
3.5. Specification of functions and procedures 8
4. Modular verification 10
5. Usage of the MOPS-system 13
6. Examples 15
6.1. Gaussian sum formula L o Lo 15
6.2. Sorting algorithms L o o 16
6.2.1. Bubblesort 16
6.2.2. Quicksort: base algorithm0 17
6.2.3. Quicksort: variation 1 0oL 25
6.2.4. Quicksort: variation 2 oL 26
6.2.5. Quicksort: variation 3o Lo oo 28
6.3. Compression and decompression: The LZW algorithm 28
7. Conclusions 28
References 28
A. Gaussian sum formula 31
B. Sorting algorithms 32
B.1. Bubblesort 32
B.1.1. The specified Modula-2 program 32
B.1.2. Proof obligations 33
B.2. Quicksort: base algorithm L. 36
B.2.1. The Modula-2 program 36
B.2.2. The specified program 38
B.2.3. Proof obligations 44
B.3. Quicksort: variation 1 52
B.4. Quicksort: variation 2 L. oL 53
B.5. Quicksort: variation 3 53

1. Introduction

1. Introduction

Almost all computer programs contain errors, at least initially. The traditional approach
to discover these errors is testing. However, since testing can only be used to show the
presence of errors but not their absence, other approaches as program verification are
pursuit. Program verification is an exact, formal method to prove for all possible inputs
the consistency between the specification of a program and its implementation. It is
obviously closely related to the formal specification of software: the correctness proof
for a program is done relative to its formal specification which should thus capture the
informal requirements sufficiently.

A wverification system automates parts of the verification task. The architecture of
verification systems usually comprises two different tiers, a predicate transformer or ver-
ification condition gemerator, and a prover. The verification condition generator takes
the program and the specification and computes a set of logical expressions called proof
obligations. These are then proven or discharged, either automatically, by the prover,
or manually, by the software engineer. If all obligations are discharged the program is
proven correct with respect to the specification (assuming that the underlying calculus
is sound). However, the failure to discharge an obligation does not always mean that the
program contains an error. It may also indicate that the specification is incomplete or
not adequate, or that the prover is too weak.

The reason for the two-tiered architecture is purely pragmatic. Any specification
language which is expressive enough to capture “interesting” requirements (and thus to
describe “interesting” programs) is undecidable. Hence, any prover is too weak for a
fully automatic system. In contrast to that, the generation of verification conditions
is decidable and a fully automatic verification condition generator can be implemented,
even for real programming languages.

The Modula Proving System (MOPS) is a Hoare-calculus based program verification
system for a large subset of the programming language Modula-2 which uses VDM-SL
[7] as specification language. The main goal of MOPS is to demonstrate the feasibil-
ity and viability of a Hoare-style verification system for a real imperative programming
language, including pointers, arrays, and other data structures. MOPS also provides
support for the modular and partial verification of large systems and includes hooks
for specification-based code reuse systems as for example NORA/HAMMR [4]. Finally,
MOPS demonstrates the combination of a verification system with an etablished speci-
fication language which exists outside the verification system itself.

MOPS is built according to the two-tiered architecture outlined above and comprises
a weakest precondition predicate transformer and a rather weak rewrite-based prover;
however, stronger off-the-shelf provers can be incorporated relatively easy. The predicate
transformer used in MOPS supports only proofs of partial correctness, i.e., reasoning
about termination cannot be done within MOPS. However, this allows us to use a simpler
calculus and also yields simpler proof obligations.

MOPS essentially follows the more traditional approach to verify programs after the
implementation is completed instead of developing proof and program hand-in-hand, as
for example advocated by the KIV-system [14]. However, we believe that the traditional
approach is better suited for the incremental or even partial verification of large systems
as the users can easily restrict the verification to the critical parts of a system.

The current version of MOPS supports almost the entire Modula-2 programming
language as defined in [17], including pointers and data structures. The only language
constructs not yet supported are variant record types, procedure types, and procedures as
parameters, i.e., higher-order procedures cannot be verified. The verification of REAL-
arithmetics is idealized and ignores possible rounding errors. Modula-2 also relies heavily
on the use of standard libraries, e.g., for input/output, systems programming, and parallel
programming. MOPS does not provide specific support for most of these modules but
programs built on top of them can be verified as usual (except for input/output) after
these modules have been re-specified using the modular verification techniques described
in section 4.

This report describes the program verification system MOPS. In Section 2 the main
ideas of the underlying calculus of MOPS are introduced. Section 3 explains how the
different constructs of Modula-2 are specified within MOPS. Section 4 deals with the
concept of modular verification. Section 5 is a short user’s guide. Then, in section 6 some
programs and their verifications are presented. While the first two examples are rather
small, the third one—quicksort—consists of a series of increasingly sophisticated versions
which include the median-of-three pivot selection strategy as well as the use of discrete
(selection) sort and bubblesort for small subarrays. As a final example the well known
LZW compression and decompression algorithms [18, 19, 16] are given. To be precise,
the description here is rather short, the full version can be found in the literature. These
collection demonstrate, we hope, that MOPS is suitable to verify “production quality”
library components. The appendix contains the source code for some of these programs.

2. Calculus

MOPS is built upon the Hoare-calculus. Its theoretical foundations and the fundamental
verification algorithms based on this calculus can be found in, e.g., [1, 2, 6]. We extended
these foundations into a calculus for the programming language Modula-2 by adding
further proof rules and extending the underlying logic. Adding new statements to the
language means adding new proof rules to the calculus. This is relatively straightforward
and as long as the new rules are sound and the statements are disjoint from the core, the
extended calculus remains obviously sound. Adding data types, however, extends the
underlying logic and can easily compromise its soundness. This problem has been dealt
with in the literature, e.g., [3, 10].

The starting point for the axioms and proof rules for the verification of arrays,
records and pointers has been the proof system given in [10]. For MOPS, this sys-
tem was extended to support explicit memory deallocation via the DISPOSE-procedure in
the Modula-2 system module. Obviously, pointers introduce the same aliasing problem
as arrays, i.e., a memory location can be addressed by different names. The main idea
in [10] is to treat all pointers of a particular type as a single dynamic array and thus to
handle pointer aliasing with the same mechanism as array aliasing. This approach, how-
ever, critically relies on Modula-2’s pointer discipline which guarantees that two pointers
refer to the same memory location only if one of them has—directly or indirectly—been
assigned to the other. It can thus not be applied to languages as C which allow pointer
arithmetics. The complete axioms and proof rules for this approach are given in [8].

Hoare-style calculi are usually defined over the classical, two-valued predicate calcu-

3. Specification and verification

lus. This implies that expressions are always assumed to be defined which in turn requires
all semantic functions to be total. Since MOPS uses VDM-SL as specification language,
it is natural to base the calculus on the logic LPF (Logic of Partial Functions) underlying
VDM-SL. This does not affect the verification condition generator; however, the proof
obligations are now LPF-formulae. Semantically, this provides an encapsulation of all
partiality reasoning within the proof theory for LPF or an off-the-shelf translation from
LPF to the classical predicate calculus. Moreover, partial correctness becomes a stronger
result than in the classical case as it implies the absence of run-time errors caused by
application of partial functions to arguments outside their domain, e.g., division by zero.

Intuitively, our calculus should be sound and relatively complete with respect to LPF;
we expect the formal proofs to be straightforward adaptations from the classical proofs
in the literature. Obviously, however, the calculus is not relatively complete with respect
to the classical predicate logic.

3. Specification and verification

MOPS supports the verification of arbitrary program segments and not only, e.g., proce-
dures or modules. This precludes considering the implementation as the final refinement
of a specification module as for example done in KIV but requires a direct embedding
of the VDM-SL specification into the Modula-2 code. Syntactically, this is achieved
by enclosing the VDM-SL expressions within formal comments (*{ and }*) such that
the annotated program can still be compiled and executed by any Modula-2 compiler.
MOPS thus assumes the syntactic correctness of the Modula-2 program. Since the VDM-
SL specification can be extracted from the annotated program automatically and shown
consistent using external tools, MOPS also assumes the syntactic correctness and inter-
nal consistency of the VDM-SL specification. Such embedding approaches date back at
least to the ANNA-system [9] and have also been used in the specification languages in
the Larch-tradition, e.g., in the Penelope-system [5].

3.1. Specification of elementary control structures

The specification and verification of statement sequences, if-, case-, and the various
loop-statements is rather straightforward. Note, there is no goto-statement in Modula-2.

MOPS uses entry/exit-tags as shown below to mark the verification segments; these
can be nested to break large proofs into manageable pieces. Loop invariants, which must
be provided as usual in Hoare-style calculi, and additional assert-tags are used to aid the
proof construction. Joint scoping allows the specification to refer to program variables
but not vice versa.

(*{ entry sum_loop

pre sum =0

post sum = n * (n+1) div 2 }x)
(*{ loopinv sum = ((i - 1) * i) div 2 }*)
FOR i := 1 TO n DO

sum := sum + ij;

3.2. Specification of array operations

END;
(*{ exit sum_loop }*)

Verification segments also provide convenient hooks for specification-based retrieval
as the pre/post-pair already comprises the crucial part of a retrieval query. By changing
the entry-tag into the VDM-SL operation signature sum_loop(n:int) ext rw sum:int
a retrieval system as NORA/HAMMR [4] (which also uses VDM-SL as specification
language) can extract a full query and search a library for semantically matching, verified
components. This allows a smooth integration of reuse without compromising program
correctness, thus reducing the overall verification effort.

The main problem of embedding an existing specification language into a verification
system (as opposed to defining a specialized behavioral interface specification language)
is to define a suitable translation between the constructs of the implementation and
specification languages. Fortunately, VDM-SL’s meta-language heritage makes this task
easier and most constructs (e.g., base types) can be mapped in a rather straightforward
way.

3.2. Specification of array operations

In their paper Verification of Array, Record and Pointer Operations in Pascal [10] Luck-
ham and Suzuki discuss an extension of the Hoare calculus to handle complex data types.
Obviously, Hoare’s assignment axiom is not sufficient for this case.

The main idea to handle structured data types is to treat them as a unit. To change
an element of an array or a records means to change the entire array or record. For
example, the assignment of an specific element A[:] of an array has no consequence to
the element A[j] when using the assignment axiom of Hoare because these elements are
syntactically different. Following Luckham und Suzuki, the assignment of A[i] changes
the array as a whole. In fact, A[j] may also be changed in case ¢ = j. For a further
discussion of the extension of the assignment axiom see [§].

An array type of Modula-2 is represented in VDM-SL by a sequence type. Multi-
dimensional arrays are modeled by sequences of sequences. A sequence is a finite map
whose domain is a subset of the natural numbers. This is described by the following type
invariant:

1.0 Sequence = N; — X
1 invs &£ 3neN-doms={1,...,n}

An immediate consequence is the precondition of a selection using an index ¢ of a
sequence s € X*:

seX*"N1<i<lens = s(i)e X
Transferring this precondition to an array of Modula-2 means that every index 7 used

to select A[i] in an array A must be an element of the domain of the array. In VDM-SL
the selection of an element 7 of a sequence A is written as A(7).

3. Specification and verification

Example 1: In the following specified Modula-2 program the values of the
variables i and j are undefined. Thus, the execution of this program will
lead to a runtime error.

MODULE ArrayTest;

VAR a : ARRAY[1..10],[2..3] OF CARDINAL;
i, j : CARDINAL;

BEGIN
(*{ entry arrayBsp post a(i)(j) = 4 }*)
ali,jl := 4;
(#{ exit arrayBsp }*)

END ArrayTest.

Using the above type invariant the MOPS-system will generate one proof
obligation:

Proof obligation in lines 8:9-9:46:
i>1and i<=10and j >= 2 and j <=3

Thus, the program cannot be proven correct w.r.t. this specification because
it cannot be guaranteed that at the beginning of the sequence the value of i

is in the range 1..10 and the value of j is in the range 2..3. O

3.3. Specification of record operations

A record type of Modula-2 is modeled in VDM-SL by a composition type. Therefore,

TYPE T = RECORD

al : Ti1;

a2 : T2;

an : Tn;
END;

is represented in VDM-SL by

T::al : T1
a2 : T2
an : Tn

END;

3.4. Specification of pointer operations

The selection of a component al of a record t is written as t.al both in Modula-2 and
VDM-SL.

Example 2: The proof obligations generated during the verification of the
following specified Modula-2 program are all reduced to true applying the
reduction rules. Therefore, in this example the verification is carried out
completely automatically.

MODULE RecordTest;

VAR x : RECORD
y : RECORD
a: ARRAY[1..5] OF CARDINAL;
END;
z : CARDINAL;
END;

BEGIN

(*{ entry mix pre true
post x.y.a(1l) = 0 }x)

X.Z = 1;
x.y.al[x.z] 0;

(*{ exit mix }x)

END RecordTest.

3.4. Specification of pointer operations

The problem of the Hoare calculus handling different names for the same variable, alias-
ing, arises also when using pointers. The main idea here is to model the pointers as a
dynamic array. The reference class P#T contains all pointers of the type “pointer to T.”
For a further discussion of the extension of the assignment axiom see [8].

To dereference a pointer @ of a reference class D the construct D C @ D is introduced.
The allocation of memory extends the reference class which is described by D U {Q}.
The reference predicate PointerTo(X, D) has been defined to express that a pointer X is
an element of a reference class D.

In MOPS only one reference class named POINTER is available. Therefore, to deref-
erence a pointer z one uses POINTER(z). To express the extension of the reference class
by the new element z there is the construct Add(POINTER,).

Example 3: The specified Modula-2 program

3. Specification and verification

MODULE PointerTest;

FROM Storage IMPORT New, Dispose;
FROM InOut IMPORT WriteString, WritelLn;

VAR x : POINTER TO CARDINAL;
BEGIN

(#{ entry NewTest pre true

post PointerTo(x, POINTER) }x*)

New (x);

(%{ exit NewTest 1}*);

(*{ entry AssignTest pre PointerTo(x, POINTER)

post PointerTo(x, POINTER) and

POINTER(x) = 4
X~ = 4,

(*{ exit AssignTest }*);

(*{ entry DisposeTest pre PointerTo(x, POINTER)
post not PointerTo(x, POINTER) }*)

Dispose (x);
(*{ exit DisposeTest }*);

END PointerTest.
is verified completely by MOPS.

3.5. Specification of functions and procedures

In VDML-SL functions and operations can be specified. These specifications may be
implicit by giving a pre- and a postcondition or explicit by describing an algorithm.
In both cases the precondition is optional. Functions compute their result using their
arguments. These arguments cannot be changed during the computation. Operations
cause a change in the global state by altering the value of external variables. These

external variables have to be declared in a state definition.

In Modula-2 there is a PROCEDURE construct which is a combination of the VDM-
SL constructs function and operation. A VDM-SL function corresponds to a Modula-2
procedure with a result and call-by-value-parameters. A function is not allowed to have

side effect on global variables.

3.5. Specification of functions and procedures

So, at first sight it looks easy to establish the connection between procedures in
Modula-2 and function and procedures in VDM-SL. However, things are slightly more
complicated.

A Modula-2 PROCEDURE with a return value and call-by-value-parameters only but
without side effects can be specified via a VDM-SL function.

Example 4: In the following fragment the Modula-2 procedure inc is spec-
ified by the explicit definition of a VDM-SL function:

(*{ functions
inc : nat -> nat
inc (n) ==n + 1 }x*)

PROCEDURE inc (x : CARDINAL) : CARDINAL;
BEGIN

RETURN x + 1
END inc;

O

A procedure without call-by-reference-parameters but with side effects on global vari-
ables corresponds to an operation in VDM-SL. The global variables of a Modula-2 pro-
gram and their values implicitly form a state.

Example 5: In the following fragment the procedure setX has a side effect
on the global variable x. The definition of an operation specifies this effect:

VAR x : CARDINAL;

(*{ operations
setX ()
ext wr x
post x = 4 }x)

PROCEDURE setX ();
BEGIN

X := 4;
END setX;

O

Call-by-reference parameters have no direct correspondence in VDM-SL; they re-
quire generating a (local) state containing the call-by-reference-parameters. Therefore,
to change the value of a parameter means to change a state variable which can be specified
using an operation.

Example 6: The procedure sum has the call-by-reference-parameter y:

4. Modular verification

PROCEDURE sum (a, b : CARDINAL; VAR y : CARDINAL);
BEGIN

y :=a+b
END sum;

Viewing y as a state variable the procedure can be specified as described
above:

PROCEDURE sum (a, b : CARDINAL; VAR y : CARDINAL);
(*{ post y = a + b }*)

d

In VDM-SL state definitions cannot be nested. Also, the definition of an operation
is only meaningful w.r.t. a state definition. A possible solution to this problem is the
specification of procedures with call-by-reference-parameters using the body of an op-
eration. This specification has to follow immediately the Modula-2 declaration of the
procedure. Thus, it is not possible to separate the specification from the declaration of
the procedure.

4. Modular verification

Large systems are inevitably split into several separate modules and MOPS supports the
verification of such modular systems. Procedure specifications can be separated from
their corresponding implementations by including them into the definition modules only.
The implementations are then verified against their definitions. Client modules which
import a specified procedure automatically import the associated function specification
and thus need to verify only the particular call. Thus, the verification can be modularized.
Figure 1 illustrates this concept.

Example 7: The procedure inc is declared in the definition module and
specified by a VDM-SL function:

DEFINITION MODULE Increment;
PROCEDURE inc (x: CARDINAL) : CARDINAL;

(*{ functions
inc : nat -> nat

inc (n) ==n + 1 F*)

END Increment.

inc is programmed in the corresponding implementation module:

10

Module.def

DEFINITION MODULE Module
(*{ functions

exmpl (arguments) == f(arguments)
exmpl: domain type -> range type }*)

PROCEDURE exmpl (arguments) : result type;

Verification of the | Verification of the procedure call]
implementation - Client.mod

Module.mod MODULE ClientModule
FROM Module IMPORT exmpl;

IMPLEMENTATION MODULE Module

PROCEDURE exmpl (arguments) : result type;
BEGIN
result := f(arguments) var := exmpl (actual parameters)

END exmpl;

Figure 1: Modular Verification

IMPLEMENTATION MODULE Increment;
PROCEDURE inc (x : CARDINAL) : CARDINAL;
BEGIN
RETURN x + 1;
END inc;

BEGIN
END Increment.

The verification of the implementation module by the MOPS-system gen-
erates the following verification conditions which are completely reduced to
true by the rewriting rules. Note that result is an auxiliary variable which
holds the result of the return-statement.

Proof obligation in lines 3:4-5:7:
false => true

Proof obligation in lines 3:4-5:7:
true => 1 + x =1 + x

Proof obligation in lines 3:4-5:7:
1 + x = result => true

The module Client imports the procedure inc:

11

4. Modular verification

MODULE Client;
FROM Increment IMPORT inc;

VAR y : CARDINAL;

BEGIN
y :=1;
(*{ entry mainl pre y =1
post y = 2 }x)

y := inc (y);
(x{ exit mainil }*)

END Client.

The verification of the function call in the module Client.mod can be done
independent of the verification of the implementation of inc in the module
Increment.mod. The verification condition

Proof obligation in lines 10:8-11:36:
1 =1y =>inc(y) = 2

is generated. Its validity is immediate. O

If a procedure contains no call-by-reference parameters, its specification can be sep-
arated entirely from the Modula-2 declaration, even beyond the file boundary of the
definition module, and moved into a completely seperated specification file containing
a pure VDM-SL module. The correspondence of these files is guaranteed by extending
the Modula-2 naming conventions (see figure 2). This allows a subsequent specification
of existing modules, e.g., standard library modules, without any changes to the defini-
tion modules. This is required for the timestamp-based module consistency mechanism
employed by most Modula-2 compilers.

In MOPS, a Modula-2 client module can import arbitrary objects from arbitrary other
modules. In particular, it can also access symbols from pure VDM-SL modules which
are not associated with any definition or implementation modules. Hence, VDM-SL can
be used as shared language to define theories supporting the verification (see figure 3).

Example 8: In the VDM-SL file functiondefs the function sum is defined:

functions
sum : nat * nat -> nat
sum (a, b) == a + b

The function is imported by the specification part of the following Modula-2
program and is used to specify the sequence main:

12

Module.def

DEFINITION MODULE Module
PROCEDURE exmpl (arguments) : result type;

Module.vdm

functions
exmpl (arguments) == f(arguments)
exmpl: domain -> result type

Verification of the procedure call

Ll

Client.mod

MODULE ClientModul

FROM Module IMPORT exmpl;

var := exmpl (actual parameters)

Figure 2: Subsequent specification

MODULE VDMImport;
(*{ imports
from functiondefs
functions sum }*)

VAR x, y, z : CARDINAL;

BEGIN

(*{ entry main post z = sum (x,y) }*)
zZ =X +y;
(*{ exit main }*)

END VDMImport.

5. Usage of the MOPS-system

As we have seen, MOPS is a verification system for programs written in a subset of the
programming language Modula-2 and specified in VDM-SL. Given a specified program
MOPS will generate all verification conditions needed to prove the partial correctness
of the program with respect to the specification. As the VDM-SL expressions are com-
pletely embedded as comments, the specified program can be translated by any Modula-2

13

5. Usage of the MOPS-system

Logic.vdm

functions
VDMexmpl (arguments) == f(arguments)
VDMexmpl: domain type -> result type

Extension of the logic

Client.mod

MODULE ClientModule
FROM Module IMPORT exmpl;
(*{ imports

from VDMModule
functions VDMexmpl }*)

var := exmpl (actual parameters)

Figure 3: Extension of the logic by VDM-SL import

compiler. As already pointed out, the MOPS system assumes the syntactical correct-
ness of the Modula-2 program and the consistency of the VDM-SL specification. The
MOPS-system is implemented in the functional programming language SML. [12]

The verification of a specified Modula-2 program is started by the SML function call

val conds = MOPS.verify "filename";

Then, the verification conditions will be collected in the file filename.vc and a protocol
of the verification will be written in filename.proof. This function call summarises the
single steps of the verification as explained below.

The syntax tree of the specified program text will be constructed by the function call

val cu = MOPSParser.fparse "filename";
The call

val all

M2_Elaborate.prepareSymTab cu;

generates the Modula-2 as well as the VDM-SL symbol tables. Since the specification
of a procedure in the source may be located before the implementation a second pass
through the syntax tree is needed:

val (cu’,mst,vst) = M2_Elaborate2.secondPrepare all;

14

This may alter the syntax tree. The generation of the verification conditions is done by
the function call

val pol = MOPS_Verify.verify’ (cu’, mst, vst, aProtocolFilename);

Using a few rewrite rules the verification conditions may be simplified by the function
call

val pol’ = map MOPS_Simplify.normalize pol;
Finally,
map MOPS_Verify.showCond pol’;

will transform the verification conditions into a text format.

6. Examples

In this section we will show some examples which have been specified and verified succes-
fully with MOPS. First, we have a look at a small program containing just one loop—the
Gaussian sum formula. Then we deal with “bubblesort” and four versions of “quicksort.”
The completely specified programs and the generated and proved verification condi-
tions can be found in [8]. Finally, the LZW compression and decompression algorithms
[16, 18, 19] are considered. Of course we cannot go into details here, they are in the
references.

6.1. Gaussian sum formula

The Gaussian formula to compute the sum of the first n natural numbers

n

. o n(n+1
Z’: (2+)

i=1

is implemented and specified in the module SumUpToN (cf. appendix A). The validity
of the verification condition generated during the verification is proved.

At the end of the computation the value of the variable sum should be 7 ; 7. Thus,
the postcondition of the statement sequence is the Gaussian formula sum = N * (N +
1) div 2. The precondition N >= 0 is redundant because the type of N is CARDINAL.
As the simplification algorithm of MOPS uses no type information this specification is
useful for the application of the rewrite rules. .

During the i-th run of the loop the value of sum is Z;:llj Furthermore, i <= N +
1. Thus, the loop invariant is formed as the conjunction of these two conditions.

Now we consider the verification conditions generated but not proved by MOPS.

Proof obligation in line 16:9-66:
exists X_7 : nat &
1+ X_7 > i and
X_7 =N and
(A -1) % i) div 2 = sum and

15

6. Examples

X7 >=1i
=> (((1 +1i) - 1) * (1 + 1)) div 2 =i + sum and
1 +N>1 + i

The expression in the end of the implication can be simplified:

(L +14)-1)* (1 +1)) div 2
i (1+1)) div 2

i (i-142)) div 2
(3% (i-1)) + 2% i) div 2
ix(i-1)) div 244

(
(
(
(
(

Using the precondition
((i-1) * 7) div 2 = sum

this can be simplified to sum + ¢ = sum + i¢. The remaining inequality 1+ N > 1+ ¢
follows from
X 7T=NAX 7>¢ = N>i.

Proof obligation in line 16:9-66:
exists X_7 : nat &
i > X_7 and
X_7 = N and
(A -1) % i) div 2 = sum and
1 +X.7>=1
=> ((1 + N) * N) div 2 = sum

Because of the precondition X 7 = N the variable X 7 can be replaced by N in the
inequalities 1 + X 7 > ¢ and 7 > X_ 7. Because ¢ € N,

N+1>i>N = :=N+1

Replacing ¢ by N + 1 in
((3-1) x 4) div 2 = sum

shows the validity of the rest of the implication:

(N % (N +1)) div 2 = sum

6.2. Sorting algorithms
6.2.1. Bubblesort

Now we are going to illustrate these ideas by more complex examples. As a first one
the reader should look at the completely specified bubblesort algorithm together with
the verification conditions generated by MOPS as given in appendix B.1. We do not
comment on this program. Instead we will concentrate on the more interesting quicksort
algorithm.

16

6.2. Sorting algorithms

6.2.2. Quicksort: base algorithm

Quicksort divides an array to be sorted in two parts and then sorts both parts recursively.
One part contains all elements less then a pivot element and the other part all elements
greater or equal than this special element. Of course, there is some freedom in choosing
the pivot element.

Here, we present the base version and three variants of the quicksort-algorithm, in-
cluding the median-of-three pivot selection strategy and the use of selection sort and
bubblesort for small subarrays. The base algorithm which uses the “middle element” as
the pivot is implemented and specified in the procedure QuickSort. (cf. appendix B.2)

The quicksort-implementations work on open arrays of element-records and sort by
one of the record components. The base version consists of more than 300 lines of
Modula-2 code and VDM-SL specification. MOPS generates 23 proof obligations and
discharges 14 by plain rewriting. By encapsulation of the variation into separate verifi-
cation segments, the number of emerging proof obligations for the variants can generally
be kept small; however, MOPS does not provide any proof management.

In the specification the predicate sorted indicates that an array is sorted. Partitioning
the array is realized using a while-loop. Starting with the lower and upper bounds of the
indices quicksort looks for elements greater or less than the pivot element. This search is
implemented using two while-loops. These loops terminate because there always exists
an element with an index greater than left whose key component is greater than or equal
to the pivot element. This is stated in the containsElementGE(Q predicate

containsElementGEQ : (seq of Element) x N x N x N — B
containsElementGEQ(A4,¢,7,v) = 3 -peN-i<p<jAA(p)key>v

The containsElementLE() predicate expresses an analogous proposition. After these
loops the value of the variable left is the index of that element whose key component is
greater than the pivot element and the value of right is the index of that element whose
key component is less than the pivot element. If the partitioning is not yet finished
these element will be swapped and the search is continued starting from these positions.
The parts whose indices are less than left and greater than right suffice. The predicate
partitioned

partitioned : (seq of Element) X NXx NXxZ xZ xN — B
partitioned(A4, m, M,l,r,p) = VkeN-m <k <= A(k).key < pivot A
VieN-r<i< M= A(i).key > pivot

is therefore an invariant for the outer while loop. Now, we are going to (manually) prove
the remaining verification conditions.

Sequence “choose_pivot”

Proof obligation in lines 61:13-66:70:
max >= min and HIGH A >= max and min >= 0

17

6. Examples

=> HIGH A >= (max + min) div 2 and (max + min) div 2 >= 0 and
containsElementGEQ(A,min,max, ([A (max + min) div 2]).key) and
containsElementLEQ(A,min,max, ([A (max + min) div 2]) .key)

The inequalities at the end of the implication follow from

maz + min

max > min A min >0 = TZO
and
HIGH(A) > maz A maz > min = HIGH(A) > M
It is
. mazr + min .
mar > min = mar > # > man,

therefore using

mazx + min
2

the existential statements in containsElementGEQ and containsElementLE(Q are valid.

P11 =p2=

Entering the outer loop

Proof obligation in lines 61:13-66:70:
min >= 0 and min = left and
max >= min and max = right and
HIGH A >= max and
containsElementGEQ(A,min,max,pivot) and
containsElementLEQ(A,min,max,pivot)

=> left >= min and right >= min - 1 and
max >= right and 1 + max >= left and
forall j : nat &

left > j and j > right => (([A j 1).key) = pivot and

partitioned(A,min,max,left,right,pivot)

The inequalities at the right hand side follow from

min = left = left > min
max = right = max > right
maz > min A min = left = 1+ maz > left

max = right A maz > min = right > min-1

The antecedents of the universal quantified statements in the partitioned predicate are
all false. Thus, the implications are true:

left = min = left > k ANk > min = false

right = max > min = left = left > j A j > right = false
right = max = max > i A1 > right = false

18

6.2.

Sequence “find_elements_to_swap”

Proof obligation in lines 110:17-128:70:
min >= 0 and max >= right and
HIGH A >= max and left >= min and right > left and
right > left =>
containsElementGEQ(A,left ,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat &
left > j and j > right => (([A j 1).key) = pivot and
partitioned(A,min,max,left,right,pivot)
=> right >= min and max >= left and
containsElementGEQ (A,left,max,pivot) and
containsElementLEQ (A,min,right,pivot)

The inequalities are consequences of

max > right A right > left = max > left
right > left A left > min = right > min.

Sorting algorithms

The containsElement predicates contain right > left in the antecedent. Because right >

left is part of the precondition these predicates are true.

Invariance of the loop invariant of the first inner while-loop

Proof obligation in lines 130:17-136:70:
left >= min and min >> 0 and
max >= right and max >= left and
HIGH A >= max and right >= min and
pivot > (([A 1left 1) . key) and
containsElementLEQ(A,min,right,pivot)
containsElementGEQ(A,left,max,pivot) and
partitioned(A,min,max,left,right,pivot) and
=> max >= 1 + left and 1 + left >= min and
partitioned(A,min,max,1 + left,right,pivot) and
containsElementGEQ(A,1 + left,max,pivot)

With left > min, left + 1 > min holds. The existential proposition of the containsEle-

mentGE(Q predicate in the end of the implication follows from
pivot > Alleft].key
together with

containsElementGEQ(4, left, maz, pivot)
= dp- -maz > p > left \ Alp|.key > pivot.

19

6. Examples

Furthermore, from these propositions we have left < max and maxz > left + 1. Because
of

(Vk - left > k A k > min = pivot > A[k].key) A pivot > Alleft].key
= (Vk-left+ 1>k Ak > min = pivot > Alk].key)

the validity of the partitioned predicate and the the verification condition are immediate.

Invariance of the loop invariant of the second inner while-loop

Proof obligation in lines 154:17-161:69:
left >= min and min >= 0 and
max >= right and max >= left and
HIGH A >= max and right >= min and
(C[L A left 1) . key) >= pivot and
(C([L A right 1) . key) > pivot and
containsElementLEQ(A,min,right,pivot)
containsElementGEQ(A,left,max,pivot) and
partitioned(A,min,max,left,right,pivot) and
=> right - 1 >= min and max >= right - 1 and
partitioned(A,min,max,left,right - 1,pivot) and
containsElementLEQ(A,min,right - 1,pivot)

>From max > right we deduce mazx > right-1. The existential proposition of the
containsElementLE() predicate in the end of the implication is a consequence of

Alright].key > pivot
and
containsElementGEQ(A4, left, maz, pivot)
= dp- -right > p A p > min A pivot > Alp|.key.
Furthermore, we have right > min and thus right-1 > min. Because of
(Vi-maz > i A i> right = Ali].key > pivot) A\ A[right].key > pivot
= (Yi-maz > i Ai> right-1 = Ali].key > pivot)

the partitioned predicate and the verification condition are valid.

Sequence “swap_elements”

Proof obligation in lines 174:17-192:70:
left >=min and min >= 0 and
max >= right and max >= left and

20

6.2. Sorting algorithms

HIGH A >= max and right >= min and
(C([L A left 1) . key) >= pivot and
pivot >= (([A right]) . key) and
containsElementLEQ(A,min,right,pivot)
containsElementGEQ(A,left,max,pivot) and
partitioned(A,min,max,left,right,pivot)
=> left > right =>
1 + max >= left and right >= min - 1 and
right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat & left > j and > right
=> (([A j 1) . key) = pivot and
right >= left =>
left >= 0 and max >= right - 1 and
1 + left >= min and 1 + max >= 1 + left and
HIGH A >= right and HIGH A >= left and
right - 1 >=min - 1 and right >> 0 and
right - 1 > 1 + left =>
containsElementGEQ (ArrayUpdate
(ArrayUpdate A left ([A right 1))
right ([A left]),1 + left,max,pivot) and
containsElementLEQ(ArrayUpdate
(ArrayUpdate A left ([A right 1))
right ([A left]),min,right - 1,pivot) and
forall j : nat &
1 + left > j and j > right - 1
=> (([(ArrayUpdate
(ArrayUpdate A left ([A right 1))
right ([A left 1)) j 1) . key) = pivot and
partitioned(ArrayUpdate
(ArrayUpdate A left ([A right 1))
right ([A 1left]), min, max,
1 + left, right - 1, pivot)

The implication consists of two Further implications. The inequalities of the one follows
from

maz > left = 1+ maz > left
and
right > min = right > min-1.

The containsElement predicates are (without a condition) part of the precondition. The
universal quantified proposition is a consequence of the validity of the partitioned predi-
cate

Vk - left > k A k > min = pivot > A[k].key A

Vi-maz > i A\ i > right = Ali].key > pivot
= Vj-left >j Nj> right = Alj].key = pivot,

21

6. Examples

therefore the first implication holds. The inequalities of the second implication are shown
by

left >min Amin>0 = left>0
max > right = max > right-1
left > min = 1+ left > min
mazx > left = 14+ mazx > 1+ left
HIGH(A) > maz A maz > right = HIGH(A) > right
HIGH(A) > maz AN maz > left = HIGH(A) > left
right > min = right-1 > min-1
right > min A min >0 = right > 0.

We have max > right and right > right-1 > left + 1. After the evaluation of the
ArrayUpdate expressions the new value of A[right] is the old value of A[left]. According
to the precondition

Alleft].key > pivot
holds. Choosing p = right in the definition of the predicate containsElementGEQ shows

the validity of the existential quantified statement. Analogously choose p = left for the
predicate containsElementLEQ. The proposition

Vk-left+1>k ANk > min
= pivot > (ArrayUpdate (ArrayUpdate A left A[right]) right A[left])[k].key

follows from
Vk-left >k ANk >min = pivot > Alk].key
with
pivot > Alright|.key
After the evaluation of the ArrayUpdate expressions the new value of A[left] is the old
value of A[right]. So
Vi-maz > i A i > right-1
= (ArrayUpdate (ArrayUpdate A left A[right]) right A[left])[i].key > pivot.

Therefore the partitioned predicate is valid. The remaining universal quantified statement
is a consequence of these two statements.

22

6.2. Sorting algorithms
Sequence “recursion_left”

Proof obligation in lines 207:13-229:69:
left >= right and left >= min and
min >= 0 and max >= right and
1 + max >= left and HIGH A >= max and right >= min - 1 and
right > left =>
containsElementGEQ(A,left ,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat &
left > j and j > right => (([L A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)
=> not right > INT(min) =>
right > min =>
sorted(A,min,right) and
right > INT(min) =>
HIGH A >= right and
right >= min and
sorted(A,min,right) =>
left >= right and left >= min and
min >= 0 and max >= right and
1 + max >= left and HIGH A >= max and right >= min - 1 and
right > left =>
containsElementGEQ(A,left ,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat &
left > j and j > right => (([L A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)

Again, the major implication consists of two further implications. The first one is just an
implication whose precondition is a negation of the precondition of the outer implication.
Therefore, one of these precondition must be false. So the first statement is true.

The second implication contains another one with precondition sorted(A, min, right).
The conclusion of this implication is part of the precondition of the outer implication.
Thus, the sorted implication holds. With the definition of the function INT in mind the
inequality right > min is part of the precondition. The remaining inequality HIGH (A) >
right follows from HIGH (A) > maz and maz > right.

Sequence “recursion _right”

Proof obligation in lines 241:13-265:69:

left >= right and left >= min and

min >= 0 and max >= right and

1 + max >= left and HIGH A >= max and right >= min - 1 and

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot)and

right > min => sorted(A,min,right) and

forall j : nat &
left > j and j > right => (([L A j 1) . key) = pivot and

23

6. Examples

partitioned(A,min,max,left,right,pivot)
=> not INT(max) > left =>
max > left =>
sorted(A,left,max) and
INT (max) > left =>
max >= left and left >= 0 and
sorted(A,left,max) =>
left >= right and left >= min and
min >= 0 and max >= right and
1 + max >= left and HIGH A >= max and
right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
right > min => sorted(A,min,right) and
forall j : nat &
left > j and j > right => ((L A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)

This proof obligation is shown analogously.

Leaving the sequence “recursion_right”

Proof obligation in lines 241:13-265:69:
left >= right and left >= min and
min >= 0 and max >= right and
1 + max >= left and HIGH A >= max and right >= min - 1 and
right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot)
right > min => sorted(A,min,right) and
max > left => sorted(A,left,max) and
forall j : nat &
left > j and j > right => (([L A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)
=> sorted(A,min,max)

>From left > right and

VEk - left > k > min = pivot > A[k].key
Vi - left > j > right = Alj].key = pivot
Vi - maz > i > right = Ali].key > pivot

we know that the array is partioned in almost three parts where the element are less than,
equal to, and greater than the pivot element. In the case right > min and max > left
the validity of the sorted predicate follows so the array is sorted. In the case right < min
or max < left the parts with elements less than and greater than the pivot element are
empty. The elements of the remaining part are according to the precondition equal to
the pivot element so the array is sorted in this case too.

24

6.2. Sorting algorithms

All verification conditions have been shown valid. Thus, the implementation is par-
tially correct with respect to the given specification. Because we have argued that the
program will always terminate, this program is even totally correct.

6.2.3. Quicksort: variation 1

The number of the recursion steps during sorting is minimal if the sizes of the parts
produced by the partition are “almost equal.” Therefore, the pivot element is chosen
best if the median of all elements is taken. An approximation is to choose the median
of three elements. The following variation of the base algorithm uses this strategy. The
pivot element will be the median of the elements on the left and the right border and
the element in the middle. (Cf. appendix B.3)

For this variant, only the verification condition of the sequence choose pivot is dif-
ferent from the one in the base algorithm.

Sequence “choose_pivot”

Proof obligation in lines 61:13-66:70:
max >= min and HIGH A >= max and min >= 0
=> not (([A min]) . key) > (([A max]) . key) =>
not (([A (max + min) div 2 1) . key) > (([A max]) . key) =>
not (([A min]) . key) > (([A (max + min) div 2]) . key) =>
min >= 0 and HIGH A >= max and
max >= min and HIGH A >= (max + min) div 2 and
(max + min) div 2 >= 0 and
containsElementGEQ(A,min,max, ([A (max + min) div 2]).key) and
containsElementLEQ(A,min,max, ([A (max + min) div 2]).key) and
((LA min]) . key) > (([A (max + min) div 2]) . key) =>
min >= 0 and HIGH A >= min and
max >= min and HIGH A >= max and
containsElementLEQ(A,min,max, ([A min]) . key) and
containsElementGEQ(A,min,max, ([A min]) . key) and
(([A (max + min) div 2]) . key) > (([A max]) . key) =>
min >= 0 and HIGH A >= max and
max >= min and max >= 0 and
containsElementLEQ(A,min,max,([A max]) . key) and
containsElementGEQ(A,min,max,([A max]) . key) and
(([A min 1) . key) > (([A max]) . key) =>
not (([A max 1) . key) > (([A (max + min) div 2]) . key) =>
not (([A min]) . key) > (([A (max + min) div 2]) . key) =>
min >= 0 and HIGH A >= min and
max >= min and HIGH A >= max and
containsElementLEQ(A,min,max, ([A min]) . key) and
containsElementGEQ(A,min,max,([A min]) . key) and
((LA min]) . key) > (([A (max + min) div 2]) . key) =>
min >= 0 and HIGH A >= (max + min) div 2 and
max >= min and HIGH A >= max and
(max + min) div 2 >= 0 and
containsElementLEQ(A,min,max, ([A (max + min) div 2]).key) and
containsElementGEQ(A,min,max, ([A (max + min) div 2]).key) and

25

6. Examples

((L A max 1) . key) > (([A (max + min) div 2 1) . key) =>
min >= 0 and HIGH A >= max and
max >= min and max >= 0 and
containsElementLEQ(A,min,max, ([A max]) . key) and
containsElementGEQ(A,min,max, ([A max]) . key)

The correctness of the inequalities

maxr > min
HIGH(A) > maz
HIGH(A) > M Tmin
max + min > 0
5 2
min > 0

follows either directly from the precondition or analogously to the proof of the base
algorithm.

Both min and maz as well as are in the range min ... max so the existential
quantified propositions of the containsElement predicate is true when choosing one of
these values.

Thus, this verification condition is valid. With this, the partial correctness of this
variation with respect to the given specification is an immediate consequence of the
correctness of the base algorithm.

maz—+min

6.2.4. Quicksort: variation 2

One more improvement of the algorithm is gained in stopping the recursion at time. In
the following variation parts of the array of size “almost two” are sorted by swapping the
elements. (appendix B.4)

In addition to the verification of the base algorithm three more conditions have to be
proven.

Entering the Sequence “swap_sort”

Proof obligation in lines 32:13-36:46:
max >= min and min >= 0 and HIGH A >= max
=> not max - min > 2
=> 2 >= max - min

The validity of this condition is a consequence of
—(maz-min >2) = 2> maz-min.

Sequence “swap_sort”

Proof obligation in lines 279:17-285:54:
min >= 0 and max >= min and

26

6.2. Sorting algorithms

HIGH A >= max and 2 >= max - min
=> not (([A min]) . key) > (([A max]) . key) =>
(C(LA max 1) . key) >= (([A min]) . key) and
(([A min 1) . key) > (([A max]) . key) =>
HIGH A >= min and
(C([L A min]).key) >= (([(ArrayUpdate
(ArrayUpdate A min ([A max])) max
([A min])) min]).key) and
max >= 0

The final part of this implication consists of two other implications. The first follows
from

—(A[min].key > A[maz].key) = A[maz].key > A[min].key
If maz # min the second expression can be simplified to
A[min].key > A[maz).key
This holds because of the precondition A[min|.key > A[maz].key. In the case of

max = min the ArrayUpdate expressions do not alter the array so the inequality can be
simplified to

A[min].key > A[min|.key(= A[maz].key)
This validity follows from the precondition A[min|.key > A[maz].key. The remaining

inequalities are deduced from

HIGH(A) > maz A maz > min = HIGH(A) > min

max > min Amin >0 = max >0

Therefore, this verification condition is valid too.

Leaving the sequence “swap_sort”

Proof obligation in lines 279:17-285:54:

min >= 0 and max >= min and

HIGH A >= max and 2 >= max - min and

(([A max 1) . key) >= (([A min]) . key)
=> sorted(A,min,max)

>From maz-min < 2 we conclude that the part of the array under consideration
consists of one or two elements. Because of

A[maz].key > Almin].key

this subarray is sorted, so the verification condition has been shown.

27

References

6.2.5. Quicksort: variation 3

Another way of stopping the recursion earlier is to use a different sorting algorithm for
parts whose size are small enough. In the following subarrays with an arbitrarily chosen
size of at most 10 are sorted using BubbleSort. (appendix B.5)

The precondition of the sequence Sort body implies the precondition of the procedure
call to BubbleSort. From the postcondition of the procedure call the postcondition of the
sequence follows. Thus, the additional verification conditions holds.

The verification of this variant of the base algorithm can therefore be reduced to the
verification of the base algorithm and the verification of BubbleSort.

6.3. Compression and decompression: The LZW algorithm

The most challenging program MOPS has been applied to so far is the LZW algorithm
introduced by Lempel, Ziv and Welch in a sequence of papers [16, 18, 19]. To be precise,
the LZW algorithm consists of a series of compression and decompression algorithms.
One of these is used e.g. in the UNIX compress algorithm. The pair of the compression
and decompression algorithm specified and verified with MOPS is the one in [16].

Because the specified program and the generated verification conditions are rather
lengthy we do not present them here. Together with a description of the LZW algorithm
they can be found in [11].

7. Conclusions

As opposed to other systems, e.g. the Karlsruhe Interactive Verifier (KIV, [13, 14, 15]),
MOPS offers the possibility to verify existing software. KIV is a verification system based
on algebraic specification and stepwise refinement. The development process in KIV
starts with the specification of the planned software system using abstract data types.
The specification language used is a first order subset of SPECTRUM. Furthermore, KIV
needs the specification of the whole system whereas MOPS is able to specify and verify
one or more selected parts of a program.

MOPS has deliberately been designed as a “small tool”. It combines established
techniques as Hoare-style reasoning and specification-based reuse with established im-
plementation and specification languages as Modula-2 and VDM-SL. This conceptual
simplicity is—in our opinion—a major contribution of MOPS and makes it also suitable
for educational purposes. Future work on MOPS includes the combination with fully au-
tomated theorem provers and the migration from the programming language Modula-2
to Java.

References

[1] K. R. Apt. Ten years of Hoare’s logic: A survey—part I. ACM Trans. on Prog.
Lang. and Systems, 3:431-483, 1981.

[2] K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Springer, New York, 1991.

28

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

References

H. Bickel and W. Struckmann. The Hoare Logic of Data Types. Informatik-Bericht
Nr. 95-04, Technische Universitdt Braunschweig, Februar 1995.

B. Fischer, J. M. Ph. Schumann, and G. Snelting. Deduction-based software compo-
nent retrieval. In Automated Deduction - A Basis for Applications, pages 265292,
Dordrecht, 1998. Kluwer.

D. Guaspari, C. Marceau, and W. Polak. Formal verification of Ada. IEEE Trans.
Software Engineering, 16(9):1058-1075, 1990.

B. Hohlfeld and W. Struckmann. Einfihrung in die Programmuverifikation. BI-Wis-
senschaftsverlag, Mannheim, 1992.

C. B. Jones. Systematic Software Development using VDM. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall, New York, 2nd edition, 1990.

Th. Kaiser. Behandlung von Datenstrukturen in einem VDM-basierten Pradikaten-
transformer fiir Modula-2, September 1998. Diplomarbeit, Technische Universitéat
Braunschweig.

D. Luckham, F. W. von Henke, B. Krieg-Briickner, and O. Owe. ANNA - A Lan-
guage for Annotating Ada Programs, volume 260 of Lect. Notes Comp. Sci. Springer,
1987.

D. C. Luckham and N. Suzuki. Verification of Array, Record and Pointer Operations
in PASCAL. ACM Trans. on Prog. Lang. and Systems, 1(2):226-244, 1979.

M. Nordmann and A. Reimers. Verifikation des LZW-Algorithmus, 2000. Studien-
arbeit, Technische Universitdt Braunschweig.

L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
Cambridge, 1991.

W. Reif. The KIV-Approach to Software Verification. In M. Broy and S. Jahnichen,
editors, KORSO: Methods, Languages, and Tools for the Construction of Correct
Software, LNCS 1009, Berlin, 1995. Springer.

W. Reif. Formale Methoden fiir sicherheitskritische Software — Der KIV-Ansatz.
Informatik Forsch. Entw., 14(4):193-202, 1999.

W. Reif, G. Schellhorn, and K. Stenzel. Interactive Correctness Proofs for Software
Modules Using KIV. In Tenth Annual Conference on Computer Assurance, IEEE
press. NIST, Gaithersburg, MD, USA, 1995.

T. Welch. A Technique for High Performance Data Compression. IEEE Computer,
17(6):8-19, 1984.

N. Wirth. Programmieren in Modula-2. Springer, Berlin, 1991.

J. Ziv and A. Lempel. A Universal Algorithm for Data Compression. IEEE Trans.
Information Theory, 23:337-343, 1977.

29

References

[19] J. Ziv and A. Lempel. Compressions of Individuel Sequences Via Variable-Rate
Coding. IEEE Trans. Information Theory, 24:530-536, 1978.

30

A.

001:
002:
003:
004:
005:
006:
007:
008:
009:
010:
011:
012:
013:
014:
015:
016:
017:
018:
019:
020:
021:
022:
023:
024:
025:
026:
027:
028:

Gaussian sum formula

MODULE SumUpToN;

FROM InOut IMPORT WriteString, WritelLn,
ReadCard, WriteCard;

VAR sum, i, N : CARDINAL;

BEGIN
WriteString ("N = ");
ReadCard (N);
(#{ entry sumFOR pre N >= 0

post sum = N * (N + 1) div 2 }%)

(*{ loopinv
sum = (i * (i - 1)) div 2 and i <= N + 1 }x*)
FOR i := 1 TO N DO
sum := sum + i;
END;
(x{ exit sumFOR }*);

WriteString ("Sum = "); WriteCard (sum, 4); WriteLn;

END SumUpToN.

Proof obligation in lines 12:9-13:46:
false => N >= 0

Proof obligation in lines 12:9-13:46:

N >0 =
0 =1 (1 -1)) div 2 and
1 <=1 + N

Proof obligation in lines 12:9-13:46:
summe = 15 => true

Proof obligation in line 16:9-66:

exists X_7 : mnat &

i<=1 + X_7 and

X_7 = N and
(1 -1) * i) div 2 = summe and
i<=X_7

31

B. Sorting algorithms

= ((1 +1i) -1) * (1 +1i)) div 2 = i + summe and
1 +i<=1 + N

Proof obligation in line 16:9-66:
exists X_7 : nat &
i<=1 + X_7 and

X_7 = N and
(i -1) * i) div 2 = summe and
i>X_7

=> summe = N * (N + 1) div 2

B. Sorting algorithms

B.1. Bubblesort
B.1.1. The specified Modula-2 program

001: MODULE BubbleSortModule;

002:

003: (* functions

004: sorted : (seq of Element) * nat * nat -> bool
005: sorted (a, i, j) ==

006: forall p, q : nat &

007: (p in set inds(a)) and (q in set inds(a)) and
008: (i <= p) and (p <= q) and (q <= j)

009: => a(p) .key <= a(q) .key *)

010:

011: TYPE Element = RECORD

012: key : CARDINAL;

013: name : ARRAY [1..40] OF CHAR;
014: END;

015:

016: PROCEDURE BubbleSort (VAR A: ARRAY OF Element);
017:
018: VAR i, j : CARDINAL;

019: hilf : Element;

020:

021: BEGIN

022: (* entry Sort_Intern

023: pre HIGH(A) >= 0

024: post sorted (A, O, HIGH(A)) =)

025:

026: (* loopinv 0 <= i and i <= HIGH(A) and

027: HIGH(A) >= 0 and

028: sorted (A, HIGH(A) - i, HIGH(A)) *)
029:

030: FOR i := 0 TO (HIGH(A) - 1) DO

031:

032: (* loopinv 0 <= i and i <= HIGH(A) - 1 and
033: 0 <= j and j <= HIGH(A) - i and

32

034: HIGH(A) >= 0 and

035: sorted(A, HIGH(A) - i, HIGH(A)) and
036: (forall k : nat &

037: (k >= 0) and (k < j) =>

038: A(k) .key <= A(j) .key) *)
039:

040: FOR j := 0 TO (HIGH(A) - 1 - i) DO

041:

042: (* entry swap

043: pre O <= i and i <= HIGH(A) - 1 and

044: 0 <= j and j <= HIGH(A) - 1 - i and
045: HIGH(A) >= 0 and

046: sorted(A, HIGH(A) - i, HIGH(A)) and
047: (forall k : nat &

048: (k >= 0) and (k < j) =>

049: A(k) .key <= A(j).key)

050:

051: post O <= i and i <= HIGH(A) - 1 and
052: 0 <= j and j <= HIGH(A) - 1 - i and
053: HIGH(A) >= 0 and

054: sorted (A, HIGH(A) - i, HIGH(A)) and
055: (forall k : nat &

056: (k >= 0) and (k < j) =>

057: A(k) .key <= A(j) .key) and

058: AGG + 1) .key >= A(j) .key *)
059:

060: IF (A[j].key > A[j + 1].key) THEN

061: hilf = A[j + 11;

062: Al + 11 := A[jI;

063: A[3] = hilf;

064: END;

065: (* exit swap *)

066:

067: END;

068: END;

069: (* exit Sort_Intern x)

070:

071: END BubbleSort;

072:

073: BEGIN

074: END BubbleSortModule.

B.1.2. Proof obligations

Proof obligation in lines 22:9-24:44:
false => HIGH A >= 0

Proof obligation in lines 22:9-24:44:
HIGH A >= 0

=> HIGH A >= 0 and O <= HIGH A and
0 <= 0 and

Bubblesort

33

B. Sorting algorithms

sorted(A, HIGH A - O , HIGH A)

Proof obligation in lines 22:9-24:44:
sorted(A, 0, HIGH A) => true

Proof obligation in lines 26:9-28:56:
exists X_2 : nat &
HIGH A >= 0 and i <= X_2 and
i <= HIGH A and 0 <= i and
HIGH A - 1 = X_2 and
sorted(A, HIGH A - i, HIGH A)
=> HIGH A >= 0 and i <= HIGH A - 1 and
0 <=i and 0 <= HIGH A - i and
0 <=0 and
forall k : nat &
k > 0 and k < 0O
= (([A k1) . key) <= (([LA 0 1) . key) and
sorted(A, HIGH A - i, HIGH A)

Proof obligation in lines 26:9-28:56:
exists X_2 : nat &
HIGH A >= 0 and i > X_2 and
i <= HIGH A and 0 <= i and
HIGH A - 1 = X_2 and
sorted(A, HIGH A - i, HIGH A)
=> sorted(A, 0, HIGH A)

Proof obligation in lines 32:11-38:57:
exists X_3 : nat &
HIGH A >= 0 and j <= X_3 and
j <= HIGH A - i and 0 <= i and
i <= HIGH A - 1 and 0 <= j and
(HIGH A - 1) - 1 = X_3 and
forall k : nat &
k >0 and k < j
=> (([A k1) .key) <= ((LA j1) . key) and
sorted(A, HIGH A - i, HIGH A)
=> HIGH A >= 0 and j <= (HIGH A - 1) - i and
i <=HIGH A -1and O <= j and
0 <=1i and
forall k : nat &
k >= 0 and k < j
= (([A k1) . key) <= ((LA j 1) . key) and
sorted(A, HIGH A - i, HIGH A)

Proof obligation in lines 32:11-38:57:
exists X_3 : nat &
HIGH A >= 0 and j > X_3 and
j <= HIGH A - i and
i <= HIGH A - 1 and
0 <= 3j and 0 <= i and
(HIGH A - 1) - i = X_3 and

34

B.1.

forall k : nat &
k >= 0 and k < j
=> (([A k1) . key) <= (([A j 1) . key) and
sorted(A, HIGH A - i, HIGH A)
=> HIGH A >= 0 and 1 + i <= HIGH A and
0 <=1 + i and
sorted(A, HIGH A - (1 + i), HIGH A)

Proof obligation in lines 42:13-58:57:
HIGH A >= 0 and j <= (HIGH A - 1) - i and
i <= HIGH A -1 and O <= j and
0 <=1i and
forall k : nat &
k > 0 and k < j
= (([A k1) . key) <= (([LA j 1) . key) and
sorted(A, HIGH A - i, HIGH A)
=>mnot (([A jI1).key) > ((LA 1 + 3 1) . key) =>
HIGH A >= 0 and
((LA 1 +31) .key) > > ((LA j 1) . key) and
j <= (HIGH A - 1) - i and i <= HIGH A - 1 and
0 <= jand 0 <=1 and
forall k : nat &
k >= 0 and k < j
=> (([A k1) . key) <= (([A jI) . key) and
sorted(A, HIGH A - i, HIGH A) and
(LA §71) .key) > (LA 1 +31) . key) =>
j >0 and j >= 0 and
1 +3>0 and1 + j>=0 and
HIGH (ArrayUpdate
(ArrayUpdate A 1 + j ([A 3 1))
j(LA 1t +31)) >0 and
(([(ArrayUpdate
(ArrayUpdate A 1 + j ([A j 1))
j(LA 1 +301)) 1 + 3] . key) >=
(([(ArrayUpdate
(ArrayUpdate A 1 + j (L A j 1)
j(LaA 1t +31)) j1) . key) and

j <= HIGH A and
j <= HIGH (ArrayUpdate A 1 + j ([A j 1)) and
j <= (HIGH (ArrayUpdate
(ArrayUpdate A 1 + j ([A j 1))
j(a 1 +31)) -2)-1iand
i <= HIGH (ArrayUpdate

(ArrayUpdate A 1 + j ([A j 1))
j(aA 1 +31))-2and
1 + j <= HIGH A and 1 + j <= HIGH A and
0 <= jand O <=1 and
forall k : mnat &
k >= 0 and k < j
=> (([(ArrayUpdate
(ArrayUpdate A 1 + j ([A j 1)
jaaA 1 +30D) k1) . key) <=

Bubblesort

35

B. Sorting algorithms

(([(ArrayUpdate
(ArrayUpdate A 1 + j ([A j 1))
j(A 1 +31) 31 . key) and
sorted (ArrayUpdate
(ArrayUpdate A 1 + j ([A j 1))
jaa 1 +30D,
(HIGH (ArrayUpdate
(ArrayUpdate A 1 + j ([A j 1))
jaaA 1 +30D)-1) -1,
HIGH (ArrayUpdate
(ArrayUpdate A 1 + j ([A j 1))
jaaA 1 +30D)-1)

Proof obligation in lines 42:13-58:57:
HIGH A >= 0 and
((LA 1 +31).key) > ((LA j1 . key) and
j <= (HIGH A - 1) - i and i <= HIGH A - 1 and
0 <=jand 0 <=1i and
forall k : mnat &
k > 0 and k < j
= (([A k1) . key) <= (([LA j 1) . key) and
sorted(A, HIGH A - i, HIGH A)
=> HIGH A >= 0 and i <= HIGH A - 1 and
1 + j <= HIGH A - i and
0 <=iand 0 <=1 + j and
forall k : mnat &
k> 0 and k <1 + j
= (([A k1) .key) <= (([LA 1 +3j1) . key) and
sorted(A, HIGH A - i, HIGH A)

B.2. Quicksort: base algorithm
B.2.1. The Modula-2 program

001: MODULE QuickSortModule;

035:

036 (% = oo m o
037: (* QuickSort

038 (H =mm oo m

039: (* Sorts the Array A of Elements using the QuickSort-Algorithm.
040: (* QuickSort is a Divide-and-Conquer-Algorithm. A will be

041: (* partitioned in two parts, which will seperately be sorted.
042: (k —mmm oo
043: PROCEDURE QuickSort (VAR A: ARRAY OF Element);

044:

045: e
046: (* Sort

047: (K e
048: (* Sorts the [min, max]-part of the array A

049: (ko mm e e e e

36

050:
051:
052:
053:
054:
055:
056:

067:
068:
069:
070:
071:
072:
073:

086:
087:
088:
089:
107:
108:

137:
138:
139:
149:
150:
151:
152:

162:
163:
168:
169:
170:
171:

193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:

B.2. Quicksort: base algorithm

PROCEDURE Sort (min, max : CARDINAL);

BEGIN

VAR pivot : CARDINAL;
left, right : INTEGER;
swap : Element;
(F m oo -

(* Choosing an element, which determines the partition:
(* here, simply the element in the middle of the array
(* — -
pivot := A [(min + max) DIV 2] .key;

left := min;

right := max;

(K m o e -
WHILE (right > left) DO

(K m e e e -
(* Finding an element with a key greater/equal
(* pivot
(K e e e -
WHILE A[left].key < pivot DO

left := left + 1;
END;

(K e e -

(K m e e o
WHILE A[right].key > pivot DO

right := right - 1;
END;

(K m o e -
(* Swap the elements, if in wrong order

(K oo e
IF (left <= right) THEN

swap := Alleft];

Alleft] := Alright];

Alright] := swap;

left = left + 1;

right := right - 1;
END;

END;

*)
*)
*)

*)
*)
*)
*)
*)

*)
*)
*)

37

B. Sorting algorithms

230: (F mmm -
231: (* If there is a less/equal-pivot-part, sort it.

235: (F mmmmm
236: IF INT(min) < right THEN

237: Sort (min, right);

238: END;

266: (¥ — e
267: (* If there is a greater/equal-pivot-part, sort it
270: (F m e -
271: IF INT(max) > left THEN

272: Sort (left, max);

273: END;

275:

276: (F mmm -
277: (* AND CONQUER

278: (F mmm -
284: END Sort;

285:

286: BEGIN

291: Sort (0, HIGH(A));

294: END QuickSort;

295:

296: BEGIN
297: END QuickSortModule.

B.2.2.

001:
002:
003:
004:
005:
006:
007:
008:
009:
010:
011:
012:
013:
014:
015:
016:
017:
018:
019:
020:

38

The specified program

MODULE QuickSortModule;

TYPE Element = RECORD
key : CARDINAL;
name : ARRAY [1..40] OF CHAR;
END;

(* functions
sorted : (seq of Element) * nat * nat -> bool
sorted (a, i, j) ==
forall p, q : nat &
(p in set inds(a)) and (q in set inds(a)) and
(i <= p) and (p <= q) and (q <= j)
=> a(p) .key <= a(q) .key;

containsElementGEQ:
(seq of Element) * nat * nat * nat -> bool
containsElementGEQ (A, i, j, v) ==
(exists p : nat &
p>=1i and p <= j and A(p).key >= v);

021:
022:
023:
024:
025:
026:
027:
028:
029:
030:
031:
032:
033:
034:
035:
036:
037:
038:
039:
040:
041:
042:
043:
044:
045:
046:
047:
048:
049:
050:
051:
052:
053:
054:
055:
056:
057:
058:
059:
060:
061:
062:
063:
064:
065:
066:
067:
068:
069:
070:
071:
072:

B.2. Quicksort: base algorithm

containsElementLEQ:
(seq of Element) * nat * nat * nat -> bool
containsElementLEQ (A, i, j, v) ==
(exists p : nat &
p >=1i and p <= j and A(p).key >= v);

partitioned:
(seq of Element) * nat * nat * int * int * nat -> bool
partitioned (A, min, max, left, right, pivot) ==
(forall k : nat & (min <= k) and (k < left)
=> A(k) .key <= pivot) and
(forall i : nat & (right < i) and (i <= max)
=> A(i) .key >= pivot) *)

(F — - *)
(* QuickSort *)
(F m - *)
(* Sorts the Array A of Elements using the QuickSort-Algorithm. *)
(* QuickSort is a Divide-and-Conquer-Algorithm. A will be *)
(* partitioned in two parts, which will seperately be sorted. *)
(F m e - *)
PROCEDURE QuickSort (VAR A: ARRAY OF Element);
(F m oo *)
(* Sort *)
(F — e *)
(* Sorts the [min, max]-part of the array A *)
(F — e *)
PROCEDURE Sort (min, max : CARDINAL);
VAR pivot : CARDINAL;
left, right : INTEGER;
swap : Element;
BEGIN

(* entry Sort_body
pre O <= min and min <= max and max <= HIGH(A)
post sorted (A, min, max) *)

(* entry choose_pivot
pre O <= min and min <= max and max <= HIGH(A)
post O <= min and min <= max and max <= HIGH(A) and

left = min and right = max and

containsElementGEQ (A, left, max, pivot) and

containsElementLEQ (A, min, right, pivot) *)
(K m o oo *)

(* Choosing an element, which determines the partition: *)
(* here, simply the element in the middle of the array *)

(F — - *)
pivot := A [(min + max) DIV 2] .key;
left := min;

39

B. Sorting algorithms

073:
074:
075:
076:
077:
078:
079:
080:
081:
082:
083:
084:
085:
086:
087:
088:
089:
090:
091:
092:
093:
094:
095:
096:
097:
098:
099:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:

40

right := max;
(* exit choose_pivot *);
(* loopinv

0 <= min and max <= HIGH(A) and

min <= left and left <= max + 1 and

min - 1 <= right and right <= max and

partitioned (A, min, max, left, right, pivot) and

(forall j : nat & (right < j) and (j < 1left)

=> A(j) .key = pivot) and
(right > left =>
containsElementGEQ (A, left, max, pivot) and
containsElementLEQ (A, min, right, pivot)) *)

(kK oo oo - *)
(* DIVIDE ... *)
(k m e *)
(* Partitioning [min ... max]: *)
(* After the execution of the loop, the following holds *)
(* (each part of the partition may be empty) *)
(* [min ... right] [...] [left ... max] *)
(* <= pivot = pivot >= pivot *)
(* *)
(* In every step, an element with a key greater and an *)
(* element less than pivot is searched (using left and *)
(* right). If they are in the wrong order (left <= *)
(* right), they will be swaped. So in every step, the *)
(* [min...left]-part will contain only element withs *)
(* keys less/equal pivot and the [right...max] part *)
(* only elements with keys greater/equal pivot. In otherx)

(*
(*
(*
(*
(*
(*

words, the partitioned-predicate holds. Furthermore, *)
as a consequence of it, for all elements with an *)
index greater than right and less than left the key *)
must be = pivot. If left >= right, there are no more *)
elements to swap, so the partition is done. *)

__ *)

WHILE (right > left) DO

(* entry find_elements_to_swap
pre O <= min and max <= HIGH(A) and

min <= left and right <= max and

left < right and

partitioned (A,min,max,left,right,pivot) and

(forall j : nat & (right < j) and (j < left)

=> A(j) .key = pivot) and

(right > left =>
containsElementGEQ (A,left,max,pivot) and
containsElementLEQ (A,min,right,pivot))

post O <= min and max <= HIGH(A) and
min <= left and left <= max and
min <= right and right <= max and
A(left) .key >= pivot and

B.2. Quicksort: base algorithm

125: A(right) .key <= pivot and

126: partitioned (A,min,max,left,right,pivot) and
127: containsElementGEQ (A, left, max, pivot) and
128: containsElementLEQ (A, min, right,pivot) *)
129:

130: (* loopinv

131: 0 <= min and max <= HIGH(A) and

132: min <= left and left <= max and

133: min <= right and right <= max and

134: partitioned (A, min, max, left, right, pivot) and
135: containsElementGEQ (A, left, max, pivot) and

136: containsElementLEQ (A, min, right, pivot) x*)

137: (F m o *)
138: (* Finding an element with a key greater/equal *)
139: (* pivot *)
140: (* The loop terminates because... *)
141: (* - in the first step of the outer loop, there *)
142: (* is at least the pivot element, *)
143: (* - in every further step there has been in *)
144: (* the preceeding step an element greater/equal *)
145: (* and one less/equal and they have been *)
146: (* swapped, so this loop will stop, if left is *)
147: (* the index of this element. *)
148: (* The containsElementGEQ-predicate holds. *)
149: (F o *)
150: WHILE A[left].key < pivot DO

151: left := left + 1;

152: END;

153:

154: (* loopinv

155: 0 <= min and max <= HIGH(A) and

156: min <= left and left <= max and

157: min <= right and right <= max and

158: A(left) .key >= pivot and

159: partitioned (A, min, max, left, right, pivot) and
160: containsElementGEQ (A, left, max, pivot) and

161: containsElementLEQ (A, min, right, pivot) *)
162: (ke *)
163: (* Finding an element with a key less/equal pivot *)
164: (x)
165: (* The loop terminates because of argument similar *)
166: (* to the left-loop, so the containsElementLEQ- *)
167: (* predicate holds. *)
168: (F e *)
169: WHILE A[right].key > pivot DO

170: right := right - 1;

171: END;

172: (* exit find_elements_to_swap *);

173:

174: (* entry swap_elements

175: pre O <= min and max <= HIGH(A) and

176: min <= left and left <= max and

41

B. Sorting algorithms

177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:

42

min <= right and right <= max and

A(left) .key >= pivot and

A(right) .key <= pivot and

partitioned (A,min,max,left,right,pivot) and
containsElementGEQ (A, left, max, pivot) and
containsElementLEQ (A, min, right, pivot)

post O <= min and max <= HIGH(A) and
min <= left and left <= max + 1 and
min - 1 <= right and right <= max and
partitioned (A,min,max,left,right,pivot) and
(forall j : nat & (right < j) and (j < left)
=> A(j) .key = pivot) and
(right > left =>
containsElementGEQ (A,left,max,pivot) and
containsElementLEQ (A,min,right,pivot)) *)
(K m oo e - *)
(* Swap the elements, if in wrong order *)
(K oo oo - *)
IF (left <= right) THEN
swap 1= A[left];
Alleft] = A[right];
Alright] := swap;
left = left + 1;
right := right - 1;

END;

(* exit swap_elements *)

END;

(* entry recursion_left

pre

post

0 <= min and max <= HIGH(A) and
min <= left and left <= max + 1 and
min - 1 <= right and right <= max and
left >= right and

partitioned (A, min, max, left, right, pivot) and
(forall j : nat & (right < j) and (j < left)
=> A(j).key = pivot) and
(right > left =>
containsElementGEQ (A, left, max, pivot) and
containsElementLEQ (A, min, right, pivot))

0 <= min and max <= HIGH(A) and
min <= left and left <= max + 1 and
min - 1 <= right and right <= max and
left >= right and

partitioned (A, min, max, left, right, pivot) and
(forall j : nat & (right < j) and (j < left)
=> A(j).key = pivot) and
(min < right => sorted(A, min, right)) and
(right > left =>
containsElementGEQ (A, left, max, pivot) and

B.2. Quicksort: base algorithm

229: containsElementLEQ (A, min, right, pivot)) *)
230: (koo *)
231: (* If there is a less/equal-pivot-part, sort it. *)
232: (* Otherwise, the recursion stops. At least for an *)
233: (* array that contains just one element, the less/equalx)
234: (* part will be empty. *)
235: (koo *)
236: IF INT(min) < right THEN

237: Sort (min, right);

238: END;

239: (* exit recursion_left *);

240:

241: (* entry recursion_right

242: pre O <= min and max <= HIGH(A) and

243: min <= left and left <= max + 1 and

244: min - 1 <= right and right <= max and

245: left >= right and

246: partitioned (A, min, max, left, right, pivot) and
247: (forall j : nat & (right < j) and (j < left)
248: => A(j) .key = pivot) and

249: (min < right => sorted(A, min, right)) and

250: (right > left =>

251: containsElementGEQ (A, left, max, pivot) and
252: containsElementLEQ (A, min, right, pivot))
253:

254: post O <= min and max <= HIGH(A) and

2565: min <= left and left <= max + 1 and

256: min - 1 <= right and right <= max and

257: left >= right and

258: partitioned (A, min, max, left, right, pivot) and
259: (forall j : nat & (right < j) and (j < left)
260: => A(j) .key = pivot) and

261: (min < right => sorted(A, min, right)) and

262: (max > left => sorted(A, left, max)) and

263: (right > left =>

264: containsElementGEQ (A, left, max, pivot) and
265: containsElementLEQ (A, min, right, pivot)) x)
266: (¥ —— e *)
267: (* If there is a greater/equal-pivot-part, sort it. *)
268: (* The recursion terminates because of the same *)
269: (* argument as for the left-recursion. *)
270: (¥ —m e *)
271: IF INT(max) > left THEN

272: Sort (left, max);

273: END;

274: (* exit recursion_right *)

275:

276: (¥ —m e *)
277: (% ... AND CONQUER *)
278: (koo *)
279: (* The less/equal-pivot- and the greater/equal-pivot- *)
280: (* part of the min-max-array are sorted, so the whole)

43

B. Sorting algorithms

281: (* array is sorted. *)
282: (K m o e *)
283: (* exit Sort_body *)

284: END Sort;

285:

286: BEGIN

287: (* entry QuickSort_body

288: pre HIGH(A) >= 0

289: post sorted (A, 0, HIGH(A)) =)

290:

291: Sort (0, HIGH(A));

292:

293: (* exit QuickSort_body *)

294: END QuickSort;

295:

296: BEGIN

297: END QuickSortModule.

B.2.3. Proof obligations

Proof obligation in lines 57:13-59:46:
false => max <= HIGH A and O <= min and min <= max

Proof obligation in lines 57:13-59:46:
max <= HIGH A and O <= min and min <= max
=> max <= HIGH A and O <= min and min <= max

Proof obligation in lines 57:13-59:46:
sorted(A,min,max) => true

Proof obligation in lines 61:13-66:70:
max <= HIGH A and 0 <= min and min <= max

=> min <= max and max <= HIGH A and
(max + min) div 2 <= HIGH A and (max + min) div 2 >= 0 and
0 <= min and min = min and max = max and
containsElementGEQ(A,min,max, ([A (max + min) div 2 1) . key) and
containsElementLEQ(A,min,max, ([A (max + min) div 2 1) . key)

Proof obligation in lines 61:13-66:70:
max <= HIGH A and 0 <= min and
min = left and max = right and min <= max and
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot)

=> left <=1 + max and min <= left and
max <= HIGH A and min - 1 <= right and
0 <= min and right <= max and

right > left =>
containsElementGEQ(A,left,max,pivot) and

44

B.2. Quicksort: base algorithm

containsElementLEQ(A,min,right,pivot)
forall j : nat &

right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)

Proof obligation in lines 76:13-85:70:

right <= max and left <=1 + max and
min <= left and max <= HIGH A and
min - 1 <= right and 0 <= min and right > left and

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)
=> min <= left and max <= HIGH A and
0 <= min and left < right and right <= max and
right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)

Proof obligation in lines 76:13-85:70:

left <=1 + max and min <= left and
max <= HIGH A and min - 1 <= right and
0 <= min and not right > left and right <= max and

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)

=> right <= max and left <=1 + max and
min <= left and max <= HIGH A and
min - 1 <= right and O <= min and left >= right and

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)

Proof obligation in lines 110:17-128:70:
min <= left and max <= HIGH A and

45

B. Sorting algorithms

0 <= min and left < right

right > left =>

and right <= max and

containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and

forall j : nat &

right < j and j < left => (([A j 1)

. key)

partitioned(A,min,max,left,right,pivot)

left <= max and min <= right

and O <= min and

min <= left and max <= HIGH A and right <= max and
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
partitioned(A,min,max,left,right,pivot)

Proof obligation in lines 110:17-128:70:

right <= max
min
max <= HIGH A and O
(C[A 1left 1) . key)

(C[A right 1) . key)

and left <=
<= right and min <=

max and
left and
<= min and
S=
<=

pivot and
pivot and

containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
partitioned(A,min,max,left,right,pivot)

right <= max
min
max <= HIGH A and O
(([A left 1) . key)

(([A right 1) . key)

and left <=
<= right and min <=

max and
left and
<= min and
>=

<=

pivot and
pivot and

containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
partitioned(A,min,max,left,right,pivot)

Proof obligation in lines
left <= max and min
min <= left and max
0 <= min and right
(([& 1left 1)

130:17-136:70:

<= right and
<= HIGH A and
<= max and

. key) < pivot and

containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
partitioned(A,min,max,left,right,pivot)

max <= HIGH A and 1 +
0 <= min
containsElementGEQ(A,1

min <= right and min <=1

and right <= max

+ left and
left <= max and
and

+ left,max,pivot) and

containsElementLEQ(A,min,right,pivot) and
partitioned(A,min,max,left + 1,right,pivot)

Proof obligation in lines

46

130:17-136:70:

= pivot and

left <= max and min <=
max <= HIGH A and O <=
not (([A 1left 1) . key)
containsElementGEQ(A,left

B.2. Quicksort: base algorithm

left and
max and

right and min <
min and right <=
< pivot and
,max,pivot) and

containsElementLEQ(A,min,right,pivot) and
partitioned(A,min,max,left,right,pivot)

and left <=
<=

right <= max
min <= left and max
(([A 1left])
containsElementGEQ(A,left

max and min <= right and

HIGH A and O <= min and

. key) >= pivot and

,max,pivot) and

containsElementLEQ(A,min,right,pivot) and

partitioned(A,min,max,left,right,pivot)

Proof obligation in lines 154:17-161:69:

((L A right 1)
(C([A 1eft 1)
right <= max and left
min
max <= HIGH A and O
containsElementGEQ(A,left

A
I

<= right and min <=
<=

. key) > pivot and
. key) >= pivot and

max and

left and
min and
,max,pivot) and

containsElementLEQ(A,min,right,pivot) and
partitioned(A,min,max,left,right,pivot)

left <= max and min <= left and
min <= right - 1 and max <= HIGH A and
right - 1 <= max and 0 <= min and

(([L A 1left 1)
containsElementGEQ(A,left

. key) >= pivot and

,max,pivot) and

containsElementLEQ(A,min,right - 1,pivot) and
partitioned(A,min,max,left,right - 1,pivot)

Proof obligation in lines 154:17-161:69:

right <= max and left <= max and
min <= right and min <= left and
max <= HIGH A and O <= min and

(C[A 1eft 1)

not (([A right 1) . key

. key) >= pivot and

) > pivot and

containsElementLEQ(A,min,right,pivot)

containsElementGEQ(A,left

,max,pivot) and

partitioned(A,min,max,left,right,pivot) and

<=
<=
<=
>=
<=

left <= max and max
min <= left and min
0 <= min and right
(C([L A left 1) . key)

(C([L A right 1) . key)

HIGH A and
right and
max and

pivot and
pivot and

containsElementLEQ(A,min,right,pivot) and

containsElementGEQ(A,left

,max,pivot) and

47

B. Sorting algorithms

partitioned(A,min,max,left,right,pivot) and

Proof obligation in lines 174:17-192:70:

right <= max and left <= max and
min <= right and min <= left and
max <= HIGH A and O <= min and

(([L A 1left 1) . key) >= pivot and

(C[A right 1) . key) <= pivot and

containsElementGEQ(A,left,max,pivot) and

containsElementLEQ(A,min,right,pivot) and

partitioned(A,min,max,left,right,pivot)
=> not left <= right =>

left <= 1 + max and min <= left and
max <= HIGH A and min - 1 <= right and
0 <= min and right <= max and

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)
left <= right =>
right >= 0 and left >= 0 and
left >= 0 and right <= HIGH A and
right <= HIGH (ArrayUpdate A left ([A right 1)) and
left <= HIGH A and left <= HIGH A and
min <= 1 + left and right >= 0 and
max <= HIGH (ArrayUpdate
(ArrayUpdate A left ([A right 1))
right ([A left])) and
1 + left <=1 + max and right - 1 <= max and
min - 1 <= right - 1 and 0 <= min and
right - 1 > 1 + left =>
containsElementGEQ(ArrayUpdate
(ArrayUpdate A left ([A right 1))
right ([A left]1),1 + left,max,pivot) and
containsElementLEQ(ArrayUpdate
(ArrayUpdate A left ([A right 1))
right ([A left]),min,right - 1,pivot) and
forall j : nat &
right - 1 < jand j <1 + left
=> (([(ArrayUpdate
(ArrayUpdate A left ([A right 1))
right ([A left 1)) j 1) . key) = pivot and
partitioned(ArrayUpdate
(ArrayUpdate A left ([A right 1))

48

B.2. Quicksort: base algorithm

right ([A 1left 1),
min, max, 1 + left, right - 1, pivot)

Proof obligation in lines 174:17-192:70:

left <= 1 + max and min <= left and
max <= HIGH A and min - 1 <= right and
0 <= min and right <= max and

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)

=> left <= 1 + max and min <= left and
max <= HIGH A and min - 1 <= right and
0 <= min and right <= max

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)

Proof obligation in lines 207:13-229:69:
right <= max and left <=1 + max and
i left and max <= HIGH A and
min - 1 <= right and O <= min and left >= right and
right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)
=> not INT(min) < right =>
right <= max and left <=1 + max and
min <= left and max <= HIGH A and
min - 1 <= right and O <= min and
right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
min < right => sorted(A,min,right) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot) and
left >= right and
INT(min) < right =>

min <

49

B. Sorting algorithms

min <= right and 0 <= min and
sorted(A,min,right) =>
right <= max and left <= 1 + max and
min <= left and max <= HIGH A and
min - 1 <= right and 0 <= min and
right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
min < right =>
sorted(A,min,right) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot) and
left >= right and
right <= HIGH A

Proof obligation in lines 207:13-229:69:

right <= max and left <=1 + max and
min <= left and max <= HIGH A and
min - 1 <= right and 0 <= min and left >= right

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
min < right =>
sorted(A,min,right) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)

=> right <= max and left <=1 + max and
min <= left and max <= HIGH A and
min - 1 <= right and 0 <= min and left >= right and

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
min < right => sorted(A,min,right) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)

Proof obligation in lines 241:13-265:69:

right <= max and left <=1 + max and
min <= left and max <= HIGH A and
min - 1 <= right and O <= min and left >= right and

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and

50

B.2. Quicksort: base algorithm

min < right => sorted(A,min,right) and
forall j : nat &

right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)

=> not INT(max) > left =>
right <= max and left <= 1 + max and
min <= left and max <= HIGH A and
min - 1 <= right and O <= min and

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
max > left => sorted(A,left,max) and
min < right => sorted(A,min,right) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot)
left >= right and
INT(max) > left =>
max <= HIGH A and 0 <= left and
sorted(A,left,max) =>

right <= max and left <=1 + max and
min <= left and max <= HIGH A and
min - 1 <= right and O <= min and

right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and

max > left => sorted(A,left,max) and

min < right => sorted(A,min,right) and

forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and

partitioned(A,min,max,left,right,pivot) and

left >= right and

left <= max

Proof obligation in lines 241:13-265:69:
right <= max and left <=1 + max and
min <= left and max <= HIGH A and
min - 1 <= right and 0 <= min and
right > left =>
containsElementGEQ(A,left,max,pivot) and
containsElementLEQ(A,min,right,pivot) and
max > left => sorted(A,left,max) and
min < right => sorted(A,min,right) and
forall j : nat &
right < j and j < left => (([A j 1) . key) = pivot and
partitioned(A,min,max,left,right,pivot) and

51

B. Sorting algorithms

left >= right
=> sorted(A,min,max)

Proof obligation in lines 279:9-281:
false => HIGH A >= 0

Proof obligation in lines 279:9-281:44:
HIGH A >= 0
=> 0 <= HIGH A and 0 <= 0 and
sorted(A, 0, HIGH A) =>
sorted(A, 0, HIGH A) and
HIGH A <= HIGH A

Proof obligation in lines 279:9-281:44:
sorted(A, 0, HIGH A) => true

B.3. Quicksort: variation 1

061: (*{ entry choose_pivot

062: pre O <= min and min <= max and max <= HIGH(A)

063: post O <= min and min <= max and max <= HIGH(A) and
064: left = min and right = max and

065: containsElementGEQ (A, left, max, pivot) and
066: containsElementLEQ (A, min, right, pivot) }x)
067: T *)
068: (* Choosing an element, which determines the partition: *)
069: (* here, the middle of three is chosen *)
070: (¥ mmmmm *)
071: IF A[min].key > A[max].key THEN

072: IF A[max].key > A[(min + max) DIV 2].key THEN

073: pivot := A[max].key;

074: ELSE

075: IF A[min] .key > A[(min + max) DIV 2].key THEN

076: pivot := A[(min + max) DIV 2] .key;

077: ELSE

078: pivot := A[min].key;

079: END

080: END

081: ELSE

082: IF A[(min + max) DIV 2].key > A[max].key THEN

083: pivot := A[max].key;

084: ELSE

085: IF A[min] .key > A[(min + max) DIV 2].key THEN

086: pivot := A[min].key;

087: ELSE

088: pivot := A[(min + max) DIV 2] .key;

089: END

090: END

091: END;

52

B.4. Quicksort: variation 2

092: left := min;
093: right := max;
094: (*{ exit choose_pivot }*);

B.4. Quicksort: variation 2

057: (*{ entry Sort_body

058: pre O <= min and min <= max and max <= HIGH(A)

059: post sorted (A, min, max) }*)

060:

061: IF (max - min > 2) THEN

277:

278: ELSE

279: (*{ entry swap_sort

280: pre O <= min and max - min <= 2 and

281: min <= max and max <= HIGH(A)

282:

283: post O <= min and max - min <= 2 and

284: min <= max and max <= HIGH(A) and

285: A(min) .key <= A(max) .key 1}*)

286: (F o *)
287: (* For an Array with one or two element, recursion *)
288: (* is not efficient. A conditional swap takes less *)
289: (* time. *)
290: (F m o *)
291: IF (A[min] .key > A[max].key) THEN

292: swap := A[min];

293: Almin] := Al[max];

294 : Almax] := swap;

295: END;

296: (#{ exit swap_sort }*)

297: END;

298:

306: (*{ exit Sort_body }*)

307: END Sort;

B.5. Quicksort: variation 3

001: MODULE QuickSortModule;

036: (F —-o oo oo oo *)
037: (* QuickSort *)
0881 (oo oo *)
043: PROCEDURE QuickSort (VAR A: ARRAY OF Element) ;

044:

045: (F mm oo *)
046: (* BubbleSort *)
047: (F mm - *)

53

B. Sorting algorithms

048:
049:
050:
051:
056:
057:
058:
059:

101:
102:
103:

104:
105:
106:
109:

115:
116:
117:
118:
119:
120:

337:
339:
341:
350:
351:

54

(*x Sorts the [1, r]l-part of the array A using the
(* BubbleSort-Algorithm.

(F oo oo -

PROCEDURE BubbleSort (1, r : CARDINAL);
BEGIN
(*{ entry BubbleSort_body
pre HIGH(A) >>r and r >> 1 and 1 >= 0
post sorted (A, 1, r) }x)

(*{ exit BubbleSort_body }*)
END BubbleSort;

(F m oo

(* Sort

(K m o e e

PROCEDURE Sort (min, max : CARDINAL);

BEGIN
(*{ entry Sort_body

pre O <= min and min <= max and max <= HIGH(A)

post sorted (A, min, max) }*)

IF (max - min > 10) THEN

ELSE
BubbleSort (min, max)
END;
(*{ exit Sort_body }*)
END Sort;

*)
*)
*)

*)
*)

96-03

96-04

96-05
96-06

96-07
97-01

97-02

97-03

97-04

97-05

97-06

97-07

98-01

98-02

98-03

98-04
98-05
98-06

98-07

98-08

99-01

99-02

99-03

99-04
00-01

1 CCIHIISCIIC UILIVELSILal DIaullsCIIWELS
Informatik-Berichte ab Nr. 96-03

C. Lindig, G. Snelting

J. Adamek, J. Koslowski,
V. Pollara, W. Struckmann

F.-J. Grosch

E. H. A. Gerbracht,
W. Struckmann

H.-D. Ehrich
A. Zeller

K. Neumann, R. Miiller
G. Denker, P. Hartel

F.-J. Grosch

J. Kiister Filipe

J. Kiister Filipe

G. Snelting, U. Grottker,
M. Goldapp

J. Krinke, G. Snelting
S. Petri, M. Bolz, H. Langendorfer

M. Cohrs, E. H. A. Gerbracht,
W. Struckmann

C. Lindig
Gregor Snelting, Frank Tip

Juliana Kiister Filipe

J. Schonwélder, M. Bolz,
S. Mertens, J. Quittek, A. Kind,
J. Nicklisch

C. Heimann, S. Lauterbach,
T. Forster

A. Zeller

P. Niebert

S. Eckstein, K. Neumann
T. Gehrke, A. Rensink

T. Kaiser, B. Fischer,
W. Struckmann

Modularization of Legacy Code Based on Mathematical
Concept Analysis

Workshop Domains II (Proceedings)

A Syntactic Approach to Structure Generativity

Zur Diskussion elementarer Funktionen aus
algorithmischer Sicht

Object Specification

Versioning Software Systems through Concept
Descriptions

Implementierung von Assertions durch Oracle7-Trigger
TROLL — An Object Oriented Formal Method for

Distributed Information System Design: Syntax and
Pragmatics

M - eine typisierte, funktionale Sprache fiir das
Programmieren-im-Grossen

Putting Synchronous and Asynchronous Object
Modules together: an Event-Based Model for
Concurrent Composition

A categorical Hiding Mechanism for Concurrent Object
Systems

VALSOFT Abschlussbericht

Validation of Measurement Software as an application
of Slicing and Constraint Solving

Transparent Migration and Rollback for Unmodified
Applications in Workstation Clusters

DISKUS - Ein Programm zur symbolischen Diskussion
reeller elementarer Funktionen

Analyse von Softwarevarianten
Reengineering Class Hierarchies Using Concept Analysis

On a Distributed Temporal Logic for Modular Object
Systems

SMX - Script MIB Extensibility Protocol Version 1.0

Entwurf und Implementierung eines verteilten Ansatzes
zur Losung langrechnender Optimierungsprobleme aus
dem Bereich der Ingenieurwissenschaften

Yesterday, my program worked. Today, it does not.
Why?

A Temporal Logic for the Specification and Verification
of Distributed Behaviour

Konzeptioneller Entwurf mit der Unified Modeling
Language

A Mobile Calculus with Data

The Modula-2 Proving System MOPS

