
MOPS: Verifying Modula-2

programs speci�ed in VDM-SL

Thomas Kaiser

1

Bernd Fischer

2

Werner Struckmann

3

Introduction

Almost all computer programs contain errors, at least initially. The traditional ap-

proach to discover these errors is testing. However, since testing can only be used to

show the presence of errors but not their absence, other approaches as program veri�-

cation are pursuit. It is an exact, formal method to prove for all possible inputs the

consistency between the speci�cation of a program and its implementation. A veri�-

cation system automates parts of the veri�cation task. The architecture of veri�cation

systems usually comprises two di�erent tiers, a predicate transformer or veri�cation

condition generator, and a prover. The veri�cation condition generator takes the pro-

gram and the speci�cation and computes a set of logical expressions called proof obli-

gations. These are then discharged, either automatically, by the prover, or manually,

by the software engineer. If all obligations are discharged the program is proven cor-

rect with respect to the speci�cation (assuming that the underlying calculus is sound).

However, the failure to discharge an obligation does not always mean that the pro-

gram contains an error. It may also indicate that the speci�cation is incomplete or not

adequate, or that the prover is too weak. The reason for the two-tiered architecture is

purely pragmatic. Any speci�cation language which is expressive enough to capture

�interesting� requirements (and thus to describe �interesting� programs) is undecid-

able. Hence, any prover is too weak for a fully automatic system. In contrast to that,

the generation of veri�cation conditions is decidable and a fully automatic veri�cation

condition generator can be implemented, even for real programming languages.

The Modula Proving System (MOPS) is a Hoare-calculus based program veri�-

cation system for a large subset of the programming language Modula-2 which uses

VDM-SL [6] as speci�cation language. The main goal of MOPS is to demonstrate the

feasibility and viability of a Hoare-style veri�cation system for a real imperative pro-

gramming language, including pointers, arrays, and other data structures. MOPS also

provides support for the modular and partial veri�cation of large systems and includes

hooks for speci�cation-based code reuse systems as for example NORA/HAMMR [3].

Finally, MOPS demonstrates the combination of a veri�cation system with an estab-

lished speci�cation language which exists outside the veri�cation system itself.

MOPS is built according to the two-tiered architecture outlined above and com-

prises a weakest precondition predicate transformer and a rather weak rewrite-based

prover; however, stronger o�-the-shelf provers can be incorporated relatively easy. The

predicate transformer used in MOPS supports only proofs of partial correctness, i.e.,

reasoning about termination cannot be done within MOPS. However, this allows us to

use a simpler calculus and also yield simpler proof obligations.

1

dvg, Postfach 72 11 07, D-30539 Hannover

2

RIACS/NASA Ames Research Center, fisch@ptolemy.arc.nasa.gov

3

Technische Universität, Institut für Software, Abteilung Programmierung, D-38092 Braunschweig

1

MOPS essentially follows the more traditional approach to verify programs after

the implementation is completed instead of developing proof and program hand-in-

hand, as for example advocated by the KIV-system [11]. However, we believe that the

traditional approach is better suited for the incremental or even partial veri�cation of

large systems as the users can easily restrict the veri�cation to the critical parts of a

system.

The current version of MOPS supports almost the entire Modula-2 programming

language as de�ned in [12], including pointers and data structures. The only language

constructs not yet supported are variant record types, procedure types, and proce-

dures as parameters, i.e., higher-order procedures cannot be veri�ed. The veri�cation

of REAL-arithmetics is idealized and ignores possible rounding errors. Modula-2 also

relies heavily on the use of standard libraries, e.g., for input/output, systems program-

ming, and parallel programming. MOPS does not provide speci�c support for these

modules but programs built on top of them can be veri�ed as usual (except for in-

put/output) after these modules have been re-speci�ed using the modular veri�cation

techniques described below.

Calculus

MOPS is built upon the Hoare-calculus. The theoretical foundations and the funda-

mental veri�cation algorithms based on this calculus can be found in, e.g., [1, 2, 5]. We

extended these foundations into a calculus for the programming language Modula-2

by adding further proof rules and extending the underlying logic. Adding new state-

ments to the language means adding new proof rules to the calculus. This is relatively

straightforward and as long as the new rules are sound and the statements are disjoint

from the core, the extended calculus remains obviously sound. Adding data types,

however, extends the underlying logic and can easily compromise its soundness.

The starting point for the veri�cation of arrays, records and pointers has been the

proof system given in [10]. For MOPS, this system was extended to support explicit

memory deallocation via the DISPOSE-procedure in the Modula-2 system module. Ob-

viously, pointers introduce the same aliasing problem as arrays, i.e., a memory location

can be addressed by di�erent names. The main idea in [10] is to treat all pointers of

a particular type as a single dynamic array and thus to handle pointer aliasing with

the same mechanism as array aliasing. This approach, however, critically relies on

Modula-2's pointer discipline which guarantees that two pointers refer to the same

memory location only if one of them has�directly or indirectly�been assigned to the

other. It can thus not be applied to languages as C which allow pointer arithmetics.

The complete axioms and proof rules for this approach are given in [7].

Hoare-style calculi are usually de�ned over the classical, two-valued predicate cal-

culus. This implies that expressions are always assumed to be de�ned which in turn

requires all semantic functions to be total. Since MOPS uses VDM-SL as speci�cation

language, it is natural to base the calculus on the logic LPF (Logic of Partial Func-

tions) underlying VDM-SL. This does not a�ect the veri�cation condition generator;

however, the proof obligations are now LPF-formulae. Semantically, this provides an

encapsulation of all partiality reasoning within the proof theory for LPF or an o�-

the-shelf translation from LPF to the classical predicate calculus. Moreover, partial

correctness becomes a stronger result than in the classical case as it implies the absence

of run-time errors caused by application of partial functions to arguments outside their

domain, e.g., division by zero.

Intuitively, our calculus should be sound and relatively complete with respect to

LPF; we expect the formal proofs to be straightforward adaptations from the classical

proofs in the literature. Obviously, however, the calculus is not relatively complete

with respect to the classical predicate logic.

2

Speci�cation and Veri�cation

MOPS supports the veri�cation of arbitrary program segments and not only, e.g.,

procedures or modules. This precludes considering the implementation as the �nal

re�nement of a speci�cation module as for example in KIV but requires a direct em-

bedding of the VDM-SL speci�cation into the Modula-2 code. Syntactically, this is

achieved by enclosing the VDM-SL expressions within formal comments (*{ and }*)

such that the annotated program can still be compiled and executed by any Modula-2

compiler. MOPS thus assumes the syntactic correctness of the Modula-2 program.

Since the VDM-SL speci�cation can be extracted from the annotated program auto-

matically and shown consistent using external tools, MOPS also assumes the syntactic

correctness and internal consistency of the VDM-SL speci�cation. Such embedding

approaches date back at least to the ANNA-system [9] and have also been used in the

speci�cation languages in the Larch-tradition, e.g., in the Penelope-system [4].

MOPS uses entry/exit-tags as shown below to mark the veri�cation segments;

these can be nested to break large proofs into manageable pieces. Loop invariants,

which must be provided as usual in Hoare-style calculi, and additional assert-tags

are used to aid the proof construction. Joint scoping allows the speci�cation to refer

to program variables but not vice versa.

...

(*{ entry sum_loop

pre sum = 0

post sum' = n * (n+1) div 2 }*)

(*{ loopinv sum = ((i - 1) * i) div 2 }*)

FOR i := 1 TO n DO

sum := sum + i;

END;

(*{ exit sum_loop }*)

...

Veri�cation segments also provide convenient hooks for speci�cation-based retrieval

as the pre/post-pair already comprises the crucial part of a retrieval query. By

changing the entry-tag into the VDM-SL operation signature sum_loop(n:int) ext

rw sum:int a retrieval system as NORA/HAMMR [3] (which also uses VDM-SL as

speci�cation language) can extract a full query and search a library for semantically

matching, veri�ed components. This allows a smooth integration of reuse without

compromising program correctness, thus reducing the overall veri�cation e�ort.

The main problem of embedding an existing speci�cation language into a veri�-

cation system (as opposed to de�ning a specialized behavioral interface speci�cation

language) is to de�ne a suitable between the constructs of the implementation and

speci�cation languages. Fortunately, VDM-SL's meta-language heritage makes this

task easier and most constructs (e.g., base types) map rather straightforward. Proce-

dures, however, are slightly more complicated. A Modula-2 PROCEDURE with a return

value and call-by-value-parameters only but without side e�ects can be speci�ed via

a VDM-SL function. Procedures with side e�ects are speci�ed by operations ; all

global variables of a Modula-2 module are automatically mapped on a single state.

Call-by-reference parameters have no direct correspondence in VDM-SL; they require

generating a (local) state.

Large systems are inevitably split into several separate modules and MOPS sup-

ports the veri�cation of such modular systems. Procedure speci�cations can be sepa-

rated from their corresponding implementations by including them into the de�nition

modules only. The implementations are then veri�ed against their de�nitions. Client

modules which import a speci�ed procedure automatically import the associated func-

tion speci�cation and thus need to verify only the particular call. Thus, the veri�cation

can be modularized. Figure 1 illustrates this concept.

3

...

...

implementation

DEFINITION MODULE

(*{ functions

Verification of the

IMPLEMENTATION MODULE

BEGIN
result := f(arguments)

Client.mod

exmpl (arguments) == f(arguments)
exmpl: domain type -> range type

END exmpl;

PROCEDURE exmpl(arguments) : result type;

exmpl;IMPORT
Module

Module

Module.mod

Module.def

Verification of the procedure call

FROM

MODULE ClientModule

Module

}*)

var := exmpl

PROCEDURE exmpl(arguments) : result type;

(actual parameters)

Figure 1: Modular Veri�cation

If a procedure contains no call-by-reference parameters, its speci�cation can be sep-

arated entirely from the Modula-2 declaration, even beyond the �le boundary of the

de�nition module, and moved into a completely seperated speci�cation �le containing

a pure VDM-SL module. The correspondence of these �les is guaranteed by extending

the Modula-2 naming conventions (see �gure 2). This allows a subsequent speci�-

cation of existing modules, e.g., standard library modules, without any changes to

the de�nition modules. This is required for the timestamp-based module consistency

mechanism employed by most Modula-2 compilers.

...

...

functions

Client.mod

ClientModulMODULE

DEFINITION MODULE

FROM

Module.def

Module

PROCEDURE exmpl(arguments) : result type;

exmpl (arguments) == f(arguments)
exmpl: domain -> result type

Module.vdm

Module exmpl;IMPORT

Verification of the procedure call

var := exmpl (actual parameters)

Figure 2: Subsequent speci�cation

In MOPS, a Modula-2 client module can import arbitrary objects from arbitrary

other modules. In particular, it can also access symbols from pure VDM-SL modules

which are not associated with any de�nition or implementation modules. Hence, VDM-

SL can be used as shared language to de�ne theories supporting the veri�cation.

4

Experiences and Conclusions

The MOPS-system is implemented in the functional programming language SML. We

have tested it successfully on small and mid-size programs, including the usual sorting

examples. [7, 8] contain a series of increasingly sophisticated variants of the quicksort-

algorithm, including the median-of-three pivot selection strategy and the use of selec-

tion sort and bubblesort for small subarrays. The quicksort-implementations work on

open arrays of element-records and sort by one of the record components. The base

variant consists of more than 300 lines of Modula-2 code and VDM-SL speci�cation.

MOPS generates 23 proof obligations and discharges 14 by plain rewriting. By encap-

sulation of the variation into separate veri�cation segments, the number of emerging

proof obligations for the variants can generally be kept small; however, MOPS does

not provide any proof management. Currently, we work on the speci�cation and veri-

�cation of the well known LZW compression and decompression algorithms [13].

MOPS has deliberately been designed as a �small tool�. It combines established

techniques as Hoare-style reasoning and speci�cation-based reuse with established im-

plementation and speci�cation languages as Modula-2 and VDM-SL. This conceptual

simplicity is�in our opinion�a major contribution of MOPS and makes it also suit-

able for educational purposes. Future work on MOPS includes the combination with

fully automated theorem provers and the migration from the programming language

Modula-2 to Java.

References

[1] K. R. Apt. Ten years of Hoare's logic: A survey�part I. ACM Trans. on Prog. Lang. and

Systems, 3:431�483, 1981.

[2] K. R. Apt and E.-R. Olderog. Veri�cation of Sequential and Concurrent Programs. Springer,

New York, 1991.

[3] B. Fischer, J. M. Ph. Schumann, and G. Snelting. Deduction-based software component retrieval.

In Automated Deduction - A Basis for Applications, pages 265�292, Dordrecht, 1998. Kluwer.

[4] D. Guaspari, C. Marceau, and W. Polak. Formal veri�cation of Ada. IEEE Trans. Software

Engineering, 16(9):1058�1075, 1990.

[5] B. Hohlfeld and W. Struckmann. Einführung in die Programmveri�kation. BI-Wissenschafts-

verlag, Mannheim, 1992.

[6] C. B. Jones. Systematic Software Development using VDM. Prentice Hall International Series

in Computer Science. Prentice Hall, New York, 2nd edition, 1990.

[7] Th. Kaiser. Behandlung von Datenstrukturen in einem VDM-basierten Prädikatentransformer

für Modula-2, September 1998. Diplomarbeit, Technische Universität Braunschweig.

[8] Th. Kaiser, B. Fischer, and W. Struckmann. The Modula-2 Proving System MOPS. Informatik-

Bericht Nr. 2000-01, Technische Universität Braunschweig, Mai 2000.

[9] D. Luckham, F. W. von Henke, B. Krieg-Brückner, and O. Owe. ANNA - A Language for

Annotating Ada Programs, volume 260 of Lect. Notes Comp. Sci. Springer, 1987.

[10] D. C. Luckham and N. Suzuki. Veri�cation of Array, Record and Pointer Operations in PASCAL.

ACM Trans. on Prog. Lang. and Systems, 1(2):226�244, 1979.

[11] W. Reif. Formale Methoden für sicherheitskritische Software � Der KIV-Ansatz. Informatik

Forsch. Entw., 14(4):193�202, 1999.

[12] N. Wirth. Programmieren in Modula-2. Springer, Berlin, 1991.

[13] J. Ziv and A. Lempel. A Universal Algorithm for Data Compression. IEEE Trans. Information

Theory, 23:337�343, 1977.

5

