
SMT-Based Bounded Model Checking
for Embedded ANSI-C Software

Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva, Senior Member, IEEE

Abstract—Propositional bounded model checking has been applied successfully to verify embedded software, but remains limited by

increasing propositional formula sizes and the loss of high-level information during the translation preventing potential optimizations to

reduce the state space to be explored. These limitations can be overcome by encoding high-level information in theories richer than

propositional logic and using SMT solvers for the generated verification conditions. Here, we propose the application of different

background theories and SMT solvers to the verification of embedded software written in ANSI-C in order to improve scalability and

precision in a completely automatic way. We have modified and extended the encodings from previous SMT-based bounded model

checkers to provide more accurate support for variables of finite bit width, bit-vector operations, arrays, structures, unions, and

pointers. We have integrated the CVC3, Boolector, and Z3 solvers with the CBMC front-end and evaluated them using both standard

software model checking benchmarks and typical embedded software applications from telecommunications, control systems, and

medical devices. The experiments show that our ESBMC model checker can analyze larger problems than existing tools and

substantially reduce the verification time.

Index Terms—Software engineering, formal methods, verification, model checking.

Ç

1 INTRODUCTION

BOUNDED Model Checking (BMC) based on Boolean
Satisfiability (SAT) has been introduced as a comple-

mentary technique to Binary Decision Diagrams (BDDs) for
alleviating the state explosion problem [1]. The basic idea of
BMC is to check the negation of a given property at a given
depth: Given a transition system M, a property �, and a
bound k, BMC unrolls the system k times and translates it
into a verification condition (VC) such that is satisfiable if
and only if � has a counterexample of depth k or less.
Standard SAT checkers can be used to check whether is
satisfiable. In BMC of software, the bound k limits the
number of loop iterations and recursive calls in the program.

In order to cope with increasing software complexity,
SMT (Satisfiability Modulo Theories) solvers can be used as
back-ends for solving the generated VCs [2], [3], [4], [6].
Here, predicates from various decidable theories are not
encoded using propositional variables as in SAT, but
remain in the problem formulation. These theories are
handled by dedicated decision procedures. Thus, in SMT-
based BMC, is a quantifier-free formula in a decidable
subset of first-order logic which is then checked for
satisfiability by an SMT solver.

In order to reason about embedded software accurately,
an SMT-based BMC must consider a number of issues that
are not easily mapped into the theories supported by SMT
solvers. In previous work on SMT-based BMC for software
[2], [3], [4], only the theories of uninterpreted functions
(UFs), arrays, and linear arithmetic were considered, but no
encoding was provided for ANSI-C [5] constructs such as
bit-level operations, fixed-point arithmetic, pointers (i.e.,
pointer arithmetic and comparisons), and unions. This
limits its usefulness for analyzing and verifying embedded
software written in ANSI-C. In addition, the SMT-based
BMC approaches proposed by Armando et al. [2], [3] and by
Kroening [6] do not support the checking of arithmetic
overflow and do not make use of high-level information to
simplify the unrolled formula. We address these limitations
by exploiting the different background theories of SMT
solvers to build an SMT-based BMC tool that precisely
translates program expressions into quantifier-free formu-
las and applies a set of optimization techniques to prevent
overburdening the solver. This way we achieve significant
performance improvements over SAT-based BMC and the
previous work on SMT-based BMC [2], [3], [4], [6].

Our work makes two major contributions. First, we
describe the details of an accurate translation from single-
threaded ANSI-C programs into quantifier-free formulas
using the logics QF_AUFBV and QF_AUFLIRA from the
SMT-LIB [9]. Second, we demonstrate that our encoding
and optimizations improve the performance of software
model checking for a wide range of software systems, with
a particular emphasis on embedded software. Additionally,
we show that our encoding allows us to reason about
arithmetic overflow and to verify programs that make use
of bit-level, pointers, unions, and fixed-point arithmetic. We
also use three different SMT solvers (Boolector [17], CVC3
[16], and Z3 [18]) in order to check the effectiveness of our

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012 957

. L. Cordeiro is with the Electronic and Information Research Center, Federal
University of Amazonas, Rua Acre, Numero 1274, Bairro Parque Dez de
Novembro, Manaus, Amazonas 69055-490, Brazil.
E-mail: lucascordeiro@ufam.edu.br.

. B. Fischer is with the School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, United Kingdom.
E-mail: thefisch@gmail.com.

. J. Marques-Silva is with the Complex and Adaptive Systems Laboratory,
School of Computer Science and Informatics, University College Dublin,
Belfield, Dublin 4, Ireland. E-mail: jpms@ucd.ie.

Manuscript received 24 May 2010; revised 21 Jan. 2011; accepted 7 May
2011; published online 16 June 2011.
Recommended for acceptance by M. Kwiatkowska.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2010-05-0156.
Digital Object Identifier no. 10.1109/TSE.2011.59.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

encoding techniques. We considered these solvers because
they were the most efficient ones for the categories of
QF_AUFBV and QF_AUFLIRA in the last SMT competi-
tions [10]. To the best of our knowledge, this is the first
work that reasons accurately about ANSI-C constructs
commonly found in embedded software and extensively
applies SMT solvers to check the VCs emerging from the
BMC of industrial embedded software applications. We
implemented our ideas in the Efficient SMT-Based Bounded
Model Checker (ESBMC) tool1 that builds on the front end
of the C Bounded Model Checker (CBMC) [11], [30]. ESBMC
supports different theories and SMT solvers in order to
exploit high-level information to simplify and to reduce the
formula size. Experimental results show that our approach
scales significantly better than both the SAT-based and
SMT-based CBMC model checker [6], [11], [30] and SMT-
CBMC [3], a bounded model checker for C programs that is
based on the SMT solvers CVC3 and Yices.

This paper extends our previous work [7], [8]. The
version of ESBMC described and evaluated here has been
optimized and extended. It now includes checks for
memory leaks and a generic SMT-LIB back end, in addition
to the native back ends for Boolector, CVC3, and Z3. We
have also significantly expanded the experimental basis and
evaluate ESBMC with (respectively, compare it against) the
most recent stable versions of the SMT solvers and BMC
tools. The remainder of the paper is organized as follows:
We first give a brief introduction to the CBMC model
checker and describe the background theories of the SMT
solvers that we will refer throughout the paper. In Section 3,
we present an accurate translation from ANSI-C programs
into quantifier-free formulas using the SMT-LIB logics and
explain our approach to exploit the different background
theories and solvers. In Section 4, we present the results of
our experiments using several software model checking
benchmarks and embedded systems applications. In Sec-
tion 5, we discuss the related work and we conclude and
describe future work in Section 6.

2 BACKGROUND

ESBMC builds on the front end of CBMC to generate the
VCs for a given ANSI-C program. However, instead of
passing the VCs to a propositional SAT solver, ESBMC
converts them using different background theories and
passes them to an SMT solver. In this section, we describe
the main features of CBMC that we use, and present the
background theories used.

2.1 C Bounded Model Checker

CBMC implements BMC for ANSI-C/C++ programs using
SAT solvers [11]. It can process C/C++ code using the goto-
cc tool [12], which compiles the C/C++ code into equivalent
GOTO-programs (i.e., control-flow graphs) using a gcc-
compliant style. The GOTO-programs can then be pro-
cessed by the symbolic execution engine. Alternatively,
CBMC uses its own, internal parser based on Flex/Bison, to
process the C/C++ files and to build an abstract syntax tree
(AST). The typechecker of CBMC’s front end annotates this

AST with types and generates a symbol table. CBMC’s IRep
class then converts the annotated AST into an internal,
language-independent format used by the remaining phase
of the front end.

CBMC uses two recursive functions that compute the
constraints (i.e., assumptions and variable assignments) and
properties (i.e., safety conditions and user-defined asser-
tions). In addition, CBMC automatically generates safety
conditions that check for arithmetic overflow and under-
flow, array bounds violations, and NULL-pointer derefer-
ences, in the spirit of Sites’ clean termination [13]. Both
functions accumulate the control flow predicates to each
program point and use these predicates to guard both the
constraints and the properties so that they properly reflect
the program’s semantics. CBMC’s VC generator (VCG) then
derives the VCs from these.

Although CBMC implements several state-of-the-art
techniques for propositional BMC, it still has the following
well-known limitations [3], [4]: 1) Large data paths
involving complex expressions lead to large propositional
formulas due to the number of variables and the width of
data types, 2) the loss of high-level information during the
translation prevents potential optimizations to prune the
state space to be explored, and 3) the size of the encoding
increases with the size of the arrays used in the program.

2.2 Satisfiability Modulo Theories

SMT decides the satisfiability of first-order formulas using a
combination of different background theories and thus
generalizes propositional satisfiability by supporting unin-
terpreted functions, linear and nonlinear arithmetic, bit-
vectors, tuples, arrays, and other decidable first-order
theories. Given a theory T and a quantifier-free formula ,
we say that is T -satisfiable if and only if there exists a
structure that satisfies both the formula and the sentences of
T , or equivalently, if T [f g is satisfiable [14]. Given a set
� [f g of formulas over T , we say that is a T -consequence
of �, and write � �T , if and only if every model of T [� is
also a model of . Checking � �T can be reduced in the
usual way to checking the T -satisfiability of � [f: g.

The SMT-LIB initiative [9] aims at establishing a common
standard for the specification of background theories, but
most SMT solvers provide functions in addition to those
specified in the SMT-LIB. Therefore, we describe here the
fragments that we found in the SMT solvers Boolector,
CVC3, and Z3 for the theory of linear, nonlinear, and bit-
vector arithmetic. We summarize the syntax of these
background theories as follows, using standard notations
where appropriate:

F ::¼ F con F j :F j A
con ::¼ ^ j _ j � j) j ,
A ::¼ T rel T j Id j true j false
rel ::¼ < j � j > j � j ¼ j 6¼
T ::¼ T op T j � T j iteðF; T ; T Þ j Const j Id j

ExtractðT; i; jÞj SignExtðT; kÞj ZeroExtðT; kÞ
op ::¼ þ j � j � j = j rem j << j >> j & j j j � j @

Here, F denotes Boolean-valued expressions with atoms A,
and T denotes terms built over integers, reals, and bit-
vectors. The logical connectives con consist of conjunction

958 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

1. Available at http://www.esbmc.org.

(^), disjunction (_), exclusive-or (�), implication ()), and
equivalence (,). The bit-level operators are and (&), or (|),
exclusive-or (�), complement (�), right-shift (>>), and left-
shift (<<). ExtractðT; i; jÞ denotes bit-vector extraction from
bits i down to j to yield a new bit-vector of size i� jþ 1
while @ denotes the concatenation of the given bit-vectors.
SignExtðT; kÞ extends a bit-vector of size w to the signed
equivalent bit-vector of size wþ k, while ZeroExtðT; kÞ
extends the bit-vector with zeros to the unsigned equivalent
bit-vector of size wþ k. The conditional expression
iteðf; t1; t2Þ takes a Boolean formula f and, depending on
its value, selects either the second or the third argument.
The interpretation of the relational operators (i.e., <, � , >,
�), the nonlinear arithmetic operators �, =, remainder (rem),
and the right-shift operator (>>) depends on whether their
arguments are unsigned or signed bit-vectors, integers, or
real numbers. The arithmetic operators induce checks to
ensure that the arithmetic operations do not overflow and/
or underflow.

The array theories of SMT solvers are typically based on
the McCarthy axioms [19]. The function select(a, i) denotes
the value of a at index position i and store(a, i, v) denotes an
array that is exactly the same as array a except that the
value at index position i is v. Formally, the functions select
and store can then be characterized by the following two
axioms [16], [17], [18]:

i ¼ j) select store a; i; vð Þ; jð Þ ¼ v
i 6¼ j) select store a; i; vð Þ; jð Þ ¼ select a; jð Þ:

Note that array bounds checks need to be encoded
separately; the array theories employ the notion of
unbounded arrays, but arrays in software are typically of
bounded size. Section 3 shows how to generate VCs to
check for array bounds violation in programs. Equality on
array elements is defined by the theory of equality with
uninterpreted functions (i.e., a ¼ b ^ i ¼ j) selectða; iÞ ¼
selectðb; jÞ) and the extensional theory of arrays then allows
reasoning about array equality as follows [16], [17], [18]:

a ¼ b(8i 	 select a; ið Þ ¼ select b; ið Þ
a 6¼ b) 9i 	 select a; ið Þ 6¼ select b; ið Þ:

Tuples are used to model the ANSI-C union and struct data
types. They provide store and select operations similar to
those in arrays, but work on the tuple elements. Each field
of the tuple is represented by an integer constant. Hence,
the expression selectðt; fÞ denotes the field f of tuple t,
while the expression storeðt; f; vÞ denotes a tuple t that at
field f has the value v, and all other fields remain the same.

In order to check the satisfiability of a formula, SMT
solvers handle the terms in the given background theory
using a decision procedure [22]. Pure SAT solvers, in
contrast, require replacing all higher level operators by bit-
level circuit equivalents (also called bit-blasting), which
destroys structural word-level information in the problem
formulation and can cause scaling problems. For example,
SAT solvers do not scale well when reasoning on the
propositional encoding of arithmetic operators (e.g., multi-
plication) because the operands are treated as arrays of w
(where w represents the bit width of the data type)

unrelated propositional variables; consequently, computa-
tional effort can be wasted during the propositional
satisfiability search [15]. However, SMT solvers are typi-
cally built on top of state-of-the-art SAT solvers and use bit-
blasting as a last resort if the more abstract and less
expensive techniques are not powerful enough to solve the
problem at hand. For example, SMT solvers often integrate
a simplifier, which applies standard algebraic reduction
rules and contextual simplification.

3 SMT-BASED BMC FOR SOFTWARE

This section describes how we generate the VCs, in
particular the encoding techniques that we use to convert
the constraints and properties from the ANSI-C programs
into the different background theories of the SMT solvers,
and our approach to deciding the best encoding and solver
to be used during the verification process.

3.1 SMT-Based BMC Formulation

In BMC, the program to be analyzed is modeled as a state
transition system, which is extracted from the control-flow
graph (CFG) [20]. This graph is built as part of a translation
process from program text to single static assignment (SSA)
form. A node in the CFG represents either a (non)
deterministic assignment or a conditional statement, while
an edge in the CFG represents a possible change in the
program’s control location.

A state transition system M ¼ ðS; T ; S0Þ is an abstract
machine that consists of a set of states S, where S0
 S
represents the set of initial states and T
 S � S is the
transition relation, i.e., pairs of states specifying how the
system can move from state to state. A state s 2 S consists of
the value of the program counter pc and the values of all
program variables. An initial state s0 assigns the initial
program location of the CFG to the pc. We identify each
transition � ¼ ðsi; siþ1Þ 2 T between two states si and siþ1

with a logical formula �ðsi; siþ1Þ that captures the con-
straints on the corresponding values of the program counter
and the program variables.

Given a transition system M, a property �, and a
bound k, BMC unrolls the system k times and translates it
into a VC such that is satisfiable if and only if � has a
counterexample of length k or less. The VC is a
quantifier-free formula in a decidable subset of first-order
logic, which is then checked for satisfiability by an SMT
solver. In this work, we are interested in checking safety
properties of single-threaded programs. The associated
model checking problem is formulated by constructing the
following logical formula:

 k ¼ Iðs0Þ ^
_k
i¼0

î�1

j¼0

�ðsj; sjþ1Þ ^ :�ðsiÞ: ð1Þ

Here, � is a safety property, I the set of initial states of M,
and �ðsj; sjþ1Þ the transition relation of M between time
steps j and jþ 1. Hence, Iðs0Þ ^

Vi�1
j¼0 �ðsj; sjþ1Þ represents

the executions of M of length i and (1) can be satisfied if and
only if for some i � k there exists a reachable state at time
step i in which � is violated. If (1) is satisfiable, then the SMT
solver provides a satisfying assignment, from which we can

CORDEIRO ET AL.: SMT-BASED BOUNDED MODEL CHECKING FOR EMBEDDED ANSI-C SOFTWARE 959

extract the values of the program variables to construct a
counterexample. A counterexample for a property � is a
sequence of states s0; s1; . . . ; sk with s0 2 S0, sk 2 S, and
�ðsi; siþ1Þ for 0 � i < k. If (1) is unsatisfiable, we can
conclude that no error state is reachable in k steps or less.

It is important to note that this approach can be used
only to find violations of the property up to the bound k.
In order to prove properties we need to compute the
completeness threshold (CT), which can be smaller than or
equal to the maximum number of loop iterations occur-
ring in the program [1], [4], [23], [24]. However,
computing CT to stop the BMC procedure and to
conclude that no counterexample can be found is as hard
as model checking. Moreover, complex programs involve
large data paths and complex expressions. Consequently,
even if we knew CT, the resulting formulas would quickly
become too hard to solve and require too much memory
to build. In practice we can thus only ensure that the
property holds in M up to a given bound k. In our work,
we focus on embedded software because it has character-
istics that make it attractive for BMC, e.g., dynamic
memory allocations and recursion are highly discouraged,
and that make the limitations of bounded model checking
less stringent.

3.2 Tool Architecture

Fig. 1 shows the main software components of ESBMC. The
white boxes (except for the SMT solver) represent the
components that we reused from the CBMC model checker
without any modification while the gray boxes with
dashed lines represent the components that we modified
in order to 1) generate VCs to check for memory leaks
(implemented in GOTO program, see Section 3.5.7), 2) to
simplify the unrolled formula (implemented in GOTO
symex, see Sections 3.3 and 3.4), and 3) to perform an up-
front analysis in the CFG of the program to determine the
best encoding and solver for a particular program
(implemented in GOTO symex, see Section 3.5.8). The
GOTO program component converts the ANSI-C program
into a GOTO-program, which simplifies the representation
(e.g., replacement of switch and while by if and goto
statements), and handles the unrolling of the loops and
the elimination of recursive functions. The GOTO symex
component performs a symbolic simulation of the program.

The gray boxes with solid lines represent new components
that we implemented to encode the given constraints and
properties of an ANSI-C program into a global logical
context, using the background theories supported by the
SMT solvers. We also implemented new components to
interpret the counterexample generated by the supported
SMT solvers. These software components must be imple-
mented in the back end to support each new SMT solver.

In the back end of ESBMC, we build two sets of
quantifier-free formulas C (for the constraints) and P (for
the properties) so that C encodes the first part of k
(more precisely, Iðs0Þ ^

Wk
i¼0

Vi�1
j¼0 �ðsj; sjþ1Þ) and :P en-

codes the second part (more precisely,
Wk
i¼0 :�ðsiÞ). After

that, we check C �T P using an SMT solver. If the answer
is satisfiable, we have found a violation of the property �,
which is encoded in k. If not, the property holds up to
the bound k.

3.3 Illustrative Example

We use the code shown in Fig. 2 as a running example to
illustrate the process of transforming a given ANSI-C
program into SSA form and then into the quantifier-free
formulasC andP shown in (2) and (3), respectively. This code
implements a simplified version of the character stuffing
technique, which avoids resynchronization after a transmis-
sion error by enclosing each frame with the ASCII character
sequences DLE STX and DLE ETX [25]. Note that this
syntactically valid ANSI-C program contains two subtle
errors. In line 28 it writes to an address outside the allocated
memory region of the array out. Additionally, the assert macro
in line 29 fails when the ASCII character NUL is transmitted,
i.e., when the condition of the while loop (line 11) does not
hold. To detect this error, we use a nondeterministic input,
i.e., we set the third position of array in (line 6) using
nd ucharðÞ, which can return any value in the range from
zero to 255.

In reasoning about this C program, ESBMC checks 25
properties related to array bounds and overflow, and the
user-specified assertion in line 29. ESBMC originally
generates 63 VCs, but with the simplifications described
in Section 3.4, only nine remain. The first eight VCs check
the bounds of the array out in lines 15, 18, and 28 and the
last VC checks the user-specified assertion in line 29; note
that the VCs to check the bounds of the array out are not

960 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

Fig. 1. Overview of the ESBMC architecture.

simplified away due to the nondeterminism in the array in,
which does not allow checking statically whether the if
statement in line 14 is true or false. In this particular
example, CBMC v3.8 generates 136 VCs, out of which 48
remain after simplification. The limited static analysis
capability of CBMC thus leads to a substantially higher
overhead in the solver.

However, before actually checking the properties, ESBMC
unrolls the program using the simplification described in
Section 3.4 and converts it into SSA form, as shown in Fig. 3;
note that the variable declarations as well as the return
statement are not shown. The SSA form only consists of
conditional and unconditional assignments, where the left-
hand side variable of each original assignment (e.g., i ¼ 0) is
replaced by a new variable (e.g., i1), as well as assertions. The
SSA notation uses WITH as symbolic representation of the
array store operator described in Section 2.2, i.e., a WITH
½i :¼ v� is equivalent to store(a, i, v).

C :¼

in1 ¼ storeðstoreðstoreðstoreðstoreðstoreðin0;
0; 16Þ; 1; 2Þ; 2; nd uchar1Þ; 3; 16Þ; 4; 3Þ; 5; 0Þ
^ i1 ¼ 0 ^ j1 ¼ 0 ^ out1 ¼ store out0; 0; 16ð Þ
^ i2 ¼ 1 ^ j2 ¼ 1 ^ out2 ¼ store out1; 1; 2ð Þ
^ g1 ¼ nd uchar1 6¼ 0
^ g2 ¼ : nd uchar1 ¼ 16ð Þ
^ out3 ¼ store out2; 2; nd uchar1ð Þ
^ j4 ¼ 3
^ . . .
^ j10 ¼ ite :g1; j3; j9ð Þ
^ out11 ¼ store out10; j10; 0ð Þ

2
66666666666666664

3
77777777777777775

;

ð2Þ

P :¼
j5 � 0 ^ j5 < 6 ^ j7 � 0 ^ j7 < 6
^ j8 � 0 ^ j8 < 6 ^ j10 � 0 ^ j10 < 6
^ select out11; 4ð Þ ¼ 3 _ select out11; 5ð Þ ¼ 3ð Þ

2
4

3
5: ð3Þ

After this transformation, we build the constraints and
properties as shown in (2) and (3), using the background
theories of the SMT solvers. Furthermore, we add Boolean
variables (or definition literals) for each clause of the formulaP
in such a way that the definition literal is true iff a given clause
of P is true. These definition literals are used to identify the
VCs. In the example, we add constraints as follows:

l0 , j5 � 0

l1 , j5 < 6

	 	 	
l9 , select out; 4ð Þ ¼ 3ð Þ _ select out; 5ð Þ ¼ 3ð Þð Þ;

and rewrite (3) as

:P :¼ :l0 _ :l1 _ 	 	 	 _ :l9: ð4Þ

Note that the language-specific safety properties (e.g.,
out-of-bounds array indexing) and the user-specified
properties that hold trivially in the code are already
simplified away (e.g., by keeping track of the size of the
array during the symbolic execution of the code). For
instance, there is no need to generate VCs that check for
array bounds violations on in since i only takes the values
from 0 to 4 when it is used in indexing the array and the
validity of the bounds checks can be evaluated statically.

We also simplify C and P by using local and recursive
transformations in order to remove functionally redundant
expressions and redundant literals as follows:

CORDEIRO ET AL.: SMT-BASED BOUNDED MODEL CHECKING FOR EMBEDDED ANSI-C SOFTWARE 961

Fig. 2. ANSI-C program with two violated properties.
Fig. 3. The program of Fig. 2 in SSA form.

a ^ true ¼ a a ^ false ¼ false
a _ false ¼ a a _ true ¼ true
a� false ¼ a a� true ¼ :a
ite true; a; bð Þ ¼ a ite false; a; bð Þ ¼ b
ite f; a; að Þ ¼ a ite f; f ^ a; bð Þ ¼ ite f; a; bð Þ:

Finally, the formula C^:P is passed to an SMT solver to
check satisfiability. Our approach is slightly different from
that of Armando et al. [3], who transform the ANSI-C code
into conditional normal form as an intermediary step to
encode C and P , while we encode them directly from the
SSA form.

3.4 Code Simplification and Reduction

We observed during development that constant propaga-
tion and forward substitution techniques [20] significantly
improve the performance of ESBMC over a wide range of
embedded software applications. We exploit the constant
propagation technique to replace pointers to objects that are
constants by the respective constant and to replace store
operations that update the content of arrays, structs, and
unions with constant values by these values.

Fig. 4 shows an example extracted from the Powerstone
benchmark [37] to illustrate how constant propagation
works for pointers in ESBMC. The function puts defined in
line 2 is in line 8 called with a pointer to an array of
constants, but CBMC’s VCG still generates VCs to check for
the bounds of the pointer s, as explained in Section 3.5.6.
During the unrolling phase, we check whether the last value
assigned to a pointer is a constant, and if so, we replace it by
the constant and pass the modified expression to a
simplifier, which is able to perform simple deductions
before generating a VC to be encoded by the back end.

We also propagate the store operations for arrays, structs,
and unions up to a certain level. Fig. 5 shows an example
extracted from the EUREKA benchmark [35] to illustrate how
constant propagation works for arrays. In line 2, we initialize
the first position of array awith a constant. In each iteration of
the for loop, we add the value of the loop counter i to the last
value written in array a and write the result to the next
position of a (see line 4). After the loop, we check whether
the assertion in line 6 holds. However, after unrolling the
loop we obtain a VC involving a large expression storeð. . .
ðstoreðstoreðstoreða0; 0; 1Þ; 1; 2Þ; 2; 4Þ; 3; 7Þ; . . .Þ of nested store
operations for a. Since all arguments except a0 are constants,
we can in principle check statically whether the assertion in
line 6 holds. In practice, however, the model checker becomes
slower than the SMT solvers in propagating these constants if
the expressions become too large. In our benchmarks, we
observed a substantial improvement in performance if
we propagate the known constants up to six nested store

operations (note that the value six was the optimum value
that we obtained empirically with ESBMC using a large set of
benchmarks). We thus substantially reduce the number of
VCs, but we leave the harder cases for the SMT solvers.

We also observed that several applications repeat the
same expression at many different places, especially after
loop unrolling, in a way that the value of the operands
does not change in between the occurrences. This can be
detected easily in the SSA form and used for caching and
forward substitution. Fig. 6 shows a fragment of the Fast
Fourier Transform (FFT) algorithm, extracted again from
the SNU-RT benchmark [27], as an example of where the
forward substitution technique can be applied. This occurs
because the SSA representations of the two outermost for
loops (in lines 6-15 and lines 8-14, respectively) will
eventually contain several copies of the innermost for loop
(lines 10-13), and thus the right-hand side of the assign-
ment in line 11 is repeated several times in the SSA form,
depending on the unwinding bound used to model check
this program. Note that constant propagation means that
the occurrence of i in line 11 is replaced by constant
values. In the different copies of the unrolled outer loops
we thus get multiple copies of the right-hand side that are
identical in the SSA form.

For example, if we set the unwinding bound k to 1,024
(which is required because the upper bound n of the
innermost for-loop is equal to 1,024, see line 4), the for-
loop in lines 6-15 will contain nine copies of the for-loop
in lines 8-14 where the variable le will assume the values
512; 256; 128; . . . ; 1. In combination with constant propaga-
tion, the expression xþ i that is assigned to the pointer
index xi is thus repeated up to nine times for each
(propagated) value that i takes in the for-loop in lines 10-
13. We thus include all expressions into a cache so that
when a given expression is processed again in the program,

962 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

Fig. 4. Code fragment of blit.
Fig. 5. Code fragment of SumArray.

Fig. 6. Code fragment of Fast Fourier Transformation.

we only retrieve it from the cache instead of creating a new
copy using a new set of variables.

3.5 Encodings

This section describes the encodings that we use to convert
the constraints and properties from the ANSI-C program
into the background theories of the SMT solvers.

3.5.1 Scalar Data Types

We provide two approaches to model unsigned and signed
integer data types, either as integers provided by the
corresponding SMT-LIB theories or as bit-vectors of a
particular bit width. For the encodings, we use the scalar
data types supported by the front end. The ANSI-C data
types int, long int, long long int, and char are considered as
signedbv with different bit widths (depending on the
machine architecture) and the unsigned versions of these
data types are considered as unsignedbv. We also support
the C enumeration declaration (which is considered as
c_enum) and we encode it as an integer type since the values
of the enumeration are already generated by the front end
and obey normal scoping rules. For double and float we
currently only support fixed-point arithmetic using fixedbv,
but not full floating-point arithmetic; see the following
section for more details.

The encoding of the relational (e.g., <, � , >, �) and
arithmetic operators (e.g., þ, �, =, �, rem) depends on the
encoding of their operands. In the SAT-based version of
CBMC [11], [30], the relational and arithmetic operators are
transformed into propositional equations using a carry
chain adder, and the size of their encoding thus depends on
the size of the bit-vector representation of the scalar data
types. In the SMT-based version of CBMC [6], only bit-
vectors are used and the capabilities of the SMT solvers to
model program variables through the corresponding
numerical domains such as ZZ are not exploited, while the
SMT-based BMC approach proposed by Armando et al. [3]
does not support the encoding of fixed-point numbers.

We support all type casts, including conversion between
integer and fixed-point types. These conversions are
performed using the functions Extract, SignExt, and
ZeroExt described in Section 2.2. Similarly, upon derefer-
encing, the object that a pointer points to is converted using
the same word-level functions. The data type bool is
converted to signedbv and unsignedbv using ite. In addition,
signedbv and unsignedbv variables are converted to bool by
comparing them to constants whose values represent zero
in the corresponding types.

3.5.2 Fixed-Point Arithmetic

Embedded applications from domains such as discrete
control and telecommunications often require arithmetic
over nonintegral numbers. However, an encoding of the full
floating-point arithmetic into the BMC framework leads to
large formulas; instead, we overapproximate it by fixed-
point arithmetic, which might introduce behavior that is not
present in a real implementation. We use two different
representations to encode nonintegral numbers, binary
(when dealing with bit-vector arithmetic), and decimal
(when dealing with rational arithmetic). In this way, we can
explore the different background theories of the SMT

solvers and trade off speed and accuracy as further
described in Section 3.5.8.

We encode fixed-point numbers using the integral and
fractional parts separately [28]. Given a rational number
that consists of an integral part I with m bits and a
fractional part F with n bits, we represent it by I:Fh i and
interpret it as I þ F=2n. For instance, the number 0.75 can be
represented as 0000:11h i in base 2 while 0.125 can
represented as 0000:001h i.

We encode fixed-point arithmetic using bit-vector arith-
metic as in the binary encoding, but we assume that the
operands have the same bit-widths both before and after the
radix point. If this is not the case, we pad the shorter bit
sequence and add zeros from the right (if there are bits
missing in the fractional part, e.g., 0:75þ 0:125 ¼
0000:1100h i þ 0000:0010h i) or from the left (if there are bits

missing before the radix point).
We encode fixed-point arithmetic using rational arith-

metic by rounding the fixed-point numbers to rationals in
base 10. We extract the integral and fractional parts and
convert them to integers I and F , respectively; we then
divide F by 2n, round the result to a given number of
decimal places, and convert everything to a rational number
in base 10. For example, with m ¼ 2, n ¼ 16, and six places
decimal precision, the number 3:9 ð11:1110011001100110Þ is
converted to I ¼ 3, and F ¼ 58; 982=216, and finally to
3;899;994=100;000. As a result, the arithmetic operations are
performed in the domain of QQ instead of IR and there is no
need to add missing bits to the integer and fractional parts.

In general, the drawback is that some numbers are not
precisely represented with fixed-point arithmetic. As an
example, if m ¼ 4 and n ¼ 4, then the closest numbers to 0.7
are 0.6875 (0000:1011h i) and 0.75 (0000:1100h i). As a result,
the number needs to be rounded and the deviation might
eventually change the control flow of the program.

3.5.3 Arithmetic Overflow and Underflow

Arithmetic overflow and underflow are frequent sources of
bugs in embedded software. ANSI-C, like most program-
ming languages, provides basic data types that have a
bounded range defined by the number of bits allocated to
them. Some model checkers treat program variables either
as unbounded integers (e.g., Blast [62]) or do not generate
VCs related to arithmetic overflow (e.g., SMT-CBMC [3],
SMT-based CBMC [6], and F-Soft [4]), and can consequently
produce false positive results. In our work, we generate VCs
related to arithmetic overflow and underflow following the
ANSI-C standard. This requires that, on arithmetic overflow
of unsigned integer types (e.g., unsigned int), the result must
be interpreted using modular arithmetic as r mod 2w, where
r is the expression that caused overflow and w is the bit-
width of the result type [5]. Hence, in this encoding the
result of the expression is one greater than the largest value
that can be represented by the result type. This semantics
can be encoded trivially using the background theories of
the SMT solvers. For each unsigned integer expression, we
generate a literal lunsigned overflow to represent the validity of
the unsigned operation and add the constraint:

lunsigned overflow , r� r mod 2wð Þð Þ < 2w:

CORDEIRO ET AL.: SMT-BASED BOUNDED MODEL CHECKING FOR EMBEDDED ANSI-C SOFTWARE 963

The ANSI-C standard does not define any behavior on
arithmetic overflow of signed types (e.g., int, long int), and
only states that integer division-by-zero must be detected. In
addition to division-by-zero detection, we consider arithmetic
overflow of signed types on addition, subtraction, multi-
plication, division, and negation operations by defining
boundary conditions. For example, we define a literal
loverflow�x;y that is true iff the multiplication of x and y exceeds
LONG MAX (i.e., x � y > LONG MAX) and another literal
lunderflow�x;y that is true iff the multiplication of x and y is below
LONG MIN. We use a literal lres op� to denote the validity of
the signed multiplication with the following constraint:

lres op� , ð:loverflow�x;y ^ :lunderflow�x;yÞ:

The overflow and underflow checks on the remaining
operators are encoded in a similar way.

3.5.4 Arrays

Arrays are encoded in a straightforward manner using the
SMT domain theories, since the WITH operator and index
operator ½ � can be mapped directly to the functions store
and select of the array theory presented in Section 2.2 [11],
[29]. For example, the assignment a0 ¼ a WITH ½i :¼ v� is
encoded with a store operation a0 ¼ storeða; i; vÞ, while x ¼
a½i� is encoded with a select operation x ¼ selectða; iÞ. In
the array theory, the arrays are unbounded, but in a
program, if an array index is out of bounds, the value
selected is undefined and an out-of-bounds write can
cause a crash. In order to check for array bounds
violations, we simply keep track of the size of the array
and generate VCs that are provable iff the indexing
expression is within the array’s bounds.

As an example, consider the code fragment shown in
Fig. 7. In order to check for the array bounds in line 4 of
Fig. 7, we create a VC to check the array index i only for the
last iteration of the for-loop since for all i with i < N � 1 we
can statically infer that there is no array bounds violation.
This VC does not require the array theory and can be
written as follows:

i < N) iþ 1 < Nð Þ: ð5Þ

Armando et al. [3] also encode programs with arrays
using the array theory of the SMT solvers, but they do not
generate VCs to check for array bounds violation. The SAT-
based version of CBMC generates such VCs but the
underlying array representation is fundamentally different.
Each array a of size s is replaced by s different scalar
variables a0; a2; . . . ; as�1 and a0 ¼ storeða; i; vÞ is then repre-
sented by the following formula [11], [30]:

ŝ�1

j¼0

a0j ¼ i ¼ jð Þ ^ vð Þ _ : i ¼ jð Þ ^ aj
� �

: ð6Þ

Similarly, b ¼ selectða; iÞ is represented as follows:

ŝ�1

j¼0

i ¼ jð Þ) b ¼ aj
� �

: ð7Þ

The size of the propositional formulae (6) and (7)
depends on the bit-width of the scalar data types and the
size of the arrays occurring in the program, as observed by
Armando et al. [3]. In addition, all high-level structure
present in the original formula is lost. In contrast, our
approach yields more compact VCs and keeps the inherent
structure.

3.5.5 Structures and Unions

Structures and unions are encoded using the theory of tuples
in SMT and we map update and access operations to the
functions store and select of the theory of tuples presented in
Section 2.2. Letw be a structure type, f be a field name of this
structure, and v be an expression matching the type of f . The
expression store(w, f, v) returns a tuple that is exactly the same
as w except that the value of field f is v; all other tuple
elements remain the same. Formally, if w0 ¼ storeðw; f; vÞ
and j is a field name of w, then

w0:j ¼ v if j ¼ f;
w:j if j 6¼ f:

�
ð8Þ

We encode unions in a similar way. The difference is that
we add an additional field l to indicate the number of the
field that was used last for writing into the union. This is
used to insert the required type-cast operations if any
subsequent read access uses a different field.

In contrast, the SMT-based BMC approach proposed by
Armando et al. [3] does not support unions; Clarke et al. [11],
[30] and Kroening [6] encode structs and unions by con-
catenating and extracting the fields. This approach, however,
might be less scalable because high-level information is lost
and therefore needs to be rediscovered by the SAT or SMT
solver (possibly with a substantial performance penalty).

3.5.6 Pointers

In ANSI-C, pointers (and pointer arithmetics) are used as
alternative to array indexing: �ðpþ iÞ is equal to a½i� if p has
been assigned a (see Fig. 8). The front end of CBMC
removes all pointer dereferences during the unwinding
phase and treats pointers as program variables. CBMC’s
VCG uses the predicate SAME_OBJECT to represent that
two pointer expressions point to the same memory location
or same object. Note that SAME_OBJECT is not a safety
property, but is mainly used to produce sensible error

964 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

Fig. 7. Array out of bounds example.

Fig. 8. C program with pointer to an array.

messages. The VCG generates safety properties that check
that 1) the pointer offset does not exceed the object bounds
(represented by LOWER_BOUND and UPPER_BOUND)
and 2) the pointer is neither NULL nor an invalid object
(represented by INVALID_POINTER). Our approach is
similar to the encoding of CBMC into propositional logic,
but we use the background theories such as tuples, integer,
and bit-vector arithmetic, while CBMC encodes them by
concatenating and extracting the bit-vectors, which operates
at the bit-level and does not exploit the structure provided
by the higher abstraction levels and is thus less scalable.

We encode pointers using two fields of a tuple p such that
p.o encodes the object the pointer points to, while p.i encodes
an offset within that object. Note that the object can be an
array, a struct, or a scalar and that the interpretation of p.i
depends on the type of the object. For arrays, it denotes the
index, for structs the field, and for scalars it is fixed to zero.
Note further that we update the object field p.o dynamically
(using the store operation of the tuple theory) to accom-
modate changes of the object that the pointer points to.

Formally, let pa and pb be pointer variables pointing to
the objects a and b. We encode SAME OBJECT by a literal
lsame object with the following constraint:

lsame object , pa:o ¼ pb:oð Þ: ð9Þ

A pointer p may point to a set of objects during its lifetime.
We thus check the SAME OBJECT property whenever we
check the value pointed by pointer p or whether the offset of
p is within the bounds of an object a. This means that we
generate lsame object for each expression that uses p as array
indexing. Formally, in order to check the pointer index, we
define the upper and lower bound of an object b by bu and
bl, respectively. We then encode the properties LOWER_
BOUND and UPPER_BOUND by creating two literals
llower bound and lupper bound with the following constraints:

llower bound , : pa:i < blð Þ _ : pa ¼ pbð Þ;
lupper bound , : pa:i � buð Þ _ : pa ¼ pbð Þ:

ð10Þ

To check invalid pointers, the NULL pointer is encoded as a
unique identifier denoted by � and an invalid object is
denoted by �. If p denotes a pointer expression, we encode
the property INVALID POINTER by a literal linvalid pointer

with the following constraint:

linvalid pointer , p:o 6¼ �ð Þ ^ p:i 6¼ �ð Þ: ð11Þ

As example, consider the C program of Fig. 8 where the
pointer p points to the array a as shown in line 3. We build
the constraints and properties shown in (12) and (13) so that
the assignment p ¼ a in line 3 is converted into a tuple p.
The second and third conjuncts p1 ¼ storeðp0; 0; aÞ and p2 ¼
storeðp1; 1; 0Þ of (12) store the object (i.e., array a) and the
index 0 at the first two positions of the tuple p:

C :¼

i0 ¼ 0 ^ p1 ¼ store p0; 0; að Þ
^ p2 ¼ store p1; 1; 0ð Þ ^ g1 ¼ ðx1 ¼ 0Þ
^ a1 ¼ storeða0; i0; 0Þ
^ a2 ¼ a0

^ a3 ¼ storeða2; 1þ i0; 1Þ
^ a4 ¼ iteðg1; a1; a3Þ
^ p3 ¼ store p2; 1; select p2; 1ð Þ þ 2ð Þ

2
666666664

3
777777775
; ð12Þ

P :¼

i0 � 0 ^ i0 < 2
^ 1þ i0 � 0 ^ 1þ i0 < 2
^ select p3; select p3; 1ð Þð Þ ¼ a
^ select select p4; 0ð Þ; select p4; 1ð Þð Þ ¼ 1Þ

2
664

3
775: ð13Þ

In order to check the property specified in line 8, we first
add the value 2 to p.i (i.e., p3 ¼ storeðp2; 1; selectðp2; 1Þ þ 2Þ
shown in the last expression of (12)) and then check
whether p and a point to the same memory location (as
shown in the next to last expression of (13)). As p.i exceeds
the size of the object stored in p.o, (i.e., array a), then the
SAME_OBJECT property is “violated” and thus the assert
macro in line 8 fails because a½2� is unconstrained (i.e., it is a
free variable as described in Section 3.5.4).

Structures consisting of n fields with scalar data types
are also manipulated like an array with n elements. This
means that the front end of CBMC allows us to encode the
structures by using the usual update and access operations.
If the structure contains arrays, pointers, and scalar data
types, then p.i points to the object within the structure only.
As an example, Fig. 9 shows a C program that contains a
pointer to a struct consisting of two fields (an array a of
integer and a char variable b). As the struct y is declared as
global in Fig. 9 (see lines 1-4), its members must be
initialized before performing any operation [5], as shown in
the first two lines of (14). The assignment p ¼ & y (see line 7
of Fig. 9) is encoded by assigning the structure y to the field
p1.o and the value 0 to the field p1:i.

C :¼

y0:b :¼ 0
^ y1 :¼ storeðstoreðy0:a; 0; 0Þ; 1; 0Þ
^ p1:o :¼ y ^ p1:i :¼ 0
^ y2 :¼ storeðy1; a; storeðy1:a; 1; 1ÞÞ
^ y3 :¼ storeðy2; b; 99Þ

2
66664

3
77775; ð14Þ

P :¼ selectðselectðy3; aÞ; 1Þ ¼ 1
^ selectðy3; bÞ ¼ 99

� �
: ð15Þ

3.5.7 Dynamic Memory Allocation

Although dynamic memory allocation is discouraged in
embedded software, ESBMC is capable of model checking
programs that use it through the ANSI-C functions malloc
and free. We model memory just as an array of bytes and
exploit the arrays theories of SMT solvers to model read and
write operations to the memory array on the logic level.
ESBMC checks three properties related to dynamic memory
allocation; in particular, it checks whether 1) the argument
to any malloc, free, or dereferencing operation is a dynamic

CORDEIRO ET AL.: SMT-BASED BOUNDED MODEL CHECKING FOR EMBEDDED ANSI-C SOFTWARE 965

Fig. 9. C program with pointer to a struct.

object (IS_DYNAMIC_OBJECT), 2) the argument to any free
or dereferencing operation is still a valid object (VALID_
OBJECT), and 3) whether the memory allocated by the
malloc function is deallocated at the end of an execution
(DEALLOCATED_OBJECT) [31]. The last check extends the
CBMC’s VCG.

Formally, let po be a pointer expression that points to the
object o of type t and let m be a memory array of type t and
size n, where n represents the number of elements to be
allocated. In our encoding, the representation of each
dynamic object do contains a unique identifier � that
indicates the objects “serial number” in the sequential
order of all dynamically allocated objects (i.e., 0 � � < k,
where k represents the total number of dynamic objects).
Each dynamic object consists of the memory array m, the
size in bytes of m, the unique identifier �, and the location
in the execution where m is allocated, which is used for
error reporting.

To detect invalid reads/writes, we check whether do is a
dynamic object and also whether po is within the bounds of
the memory array. Let i be an integer variable that
indicates the position in which the object pointed to by
po must be stored in the memory array m. We encode
IS_DYNAMIC_OBJECT as a literal lis dynamic object with the
following constraint:

lis dynamic object ,
_k�1

n¼0

do:�j ¼ n
 !

^ 0 � i < nð Þ: ð16Þ

To check for invalid objects, we add one additional bit
field � to each dynamic object to indicate whether it is still
alive or not. We set � to true when the function malloc is
called to denote that the object is alive. When the function
free is called, we set � to false to denote that the object is no
longer alive. We then encode VALID_OBJECT as a literal
lvalid object with the following constraint:

lvalid object , lis dynamic object) do:�
� �

: ð17Þ

To detect forgotten memory, we check, at the end of the
(unrolled) program, for each dynamic object whether it has
been deallocated by the function free. We can thus use the
existing flag, encoding DEALLOCATED_OBJECT as a literal
ldeallocated object with the following constraint:

ldeallocated object , lis dynamic object) :do:�
� �

: ð18Þ

Note that the difference between VALID_OBJECT and
DEALLOCATED_OBJECT is the location at which they are
checked: VALID_OBJECT is checked for each access to a
pointer variable, while DEALLOCATED_OBJECT is checked
only immediately before the (unrolled) program terminates.
Note further that both the allocation location and size of
each dynamic object are immutable, whereas the bit field �
is updated when the functions malloc and free are called.

3.5.8 Exploiting Representative Data Types

Modern SMT solvers provide ways to model the program
variables either as bit-vectors or as elements of an abstract
numerical domain (e.g., ZZ, QQ, or IR). If the program variables
are modeled as bit-vectors of a fixed size, then the result of
the analysis can be precise (w.r.t. the ANSI-C semantics),

depending on the size considered for the bit-vectors. In
contrast, if the program variables are modeled using the
abstract numerical domains, then the result of the analysis is
independent from the actual binary representation, but it
may not be precise when arithmetic expressions are
involved. As an example consider the following small C
program from [11], [30] as shown in Fig. 10.

This program nondeterministically selects two values of
type unsigned char and uses bitwise AND, right-, and left-
shift operations to multiply them. Reasoning about this
program by means of integer arithmetic produces wrong
results if the bit-level operators are treated as uninterpreted
functions. Although UFs simplify the proofs, they ignore
the semantics of the operators and consequently make the
formula weaker. In addition, the majority of the software
model checkers (e.g., SMT-CBMC [3] and BLAST [62]) fail to
check the assertion in line 9. On the other hand, bit-vector
arithmetic allows us to encode bit-level operators in a more
accurate way. However, in our benchmarks, we noted that
the majority of VCs are solved faster if we model the basic
data types as ZZ and IR. Consequently, we have to trade off
between speed and accuracy, which are two competing goals
in formal verification of software using SMT.

Based on the extent to which the SMT solvers support the
domain theories and on experimental results obtained with
a large set of benchmarks, we developed a simple but
effective heuristic to determine the best representation for
the program variables as well as the best SMT solver to be
used in order to check the properties of a given ANSI-C
program. Our default representation for encoding the
constraints and properties of ANSI-C programs are integers
and reals, respectively, and our default solver is Z3. We
then explore the CFG representation of the program. If we
find expressions that involve bit operations (e.g., <<, >>,
&, |, �) or typecasts from signed to unsigned data types
and vice versa, we encode the corresponding variables as
bit-vectors and either switch the SMT solver to Boolector (if
no pointers are used) or we keep Z3 (if pointers are used).
We adopted this strategy because we are able to implement
the theory of tuples on top of Z3 to model pointers and thus
exploit the structure provided by the word-level instead of
bit-level models (i.e., instead of concatenating and extract-
ing bit-vectors, which is the approach used by CBMC [11],
[30] and has not shown success in practice due to the loss of
structure associated with the translation process) [32].

4 EXPERIMENTAL EVALUATION

The experimental evaluation of our work consists of five
parts. After describing the setup in Section 4.1, we compare

966 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

Fig. 10. A C program that uses shift-and-add to multiply two numbers.

in Section 4.2 the SMT solvers Boolector, CVC3, and Z3 to
identify the most suitable SMT solver for further develop-
ment and experiments. In Section 4.3, we evaluate the
simplification techniques proposed in Section 3.4. In
Section 4.4, we check the error detection capability of
ESBMC over a large set of both correct and buggy ANSI-C
programs. In the last two sections, we evaluate ESBMC’s
performance relative to that of two other ANSI-C BMC tools.
In Section 4.5, we compare ESBMC and SMT-CBMC, using
SMT-CBMC’s own benchmark suite, while we compare
ESBMC and CBMC in the final Section 4.6, using a variety of
programs, including embedded software used in telecom-
munications, control systems, and medical devices.

4.1 Experimental Setup

We used benchmarks from a variety of sources to evaluate
ESBMC’s precision and performance, which include em-
bedded systems benchmark suites and applications as well
as other test suites and applications, including the SAT
solver PicoSAT [42], the open-source applications flex [43]
and git-remote [44], and a flasher manager application [45].
We also extracted one particular application from the
CBMC manual [11] that implements the multiplication of
two numbers using bit-level operations.

The PowerStone [37] suite contains graphics applica-
tions, paging communication protocols, and bit shifting
applications. The SNU-RT [27] suite consists of matrix and
signal processing functions such as matrix multiplication
and decomposition, quadratic equations solving, cyclic
redundancy check, fast Fourier transform, LMS adaptive
signal enhancement, and JPEG encoding. We use the
nondeterministic version of these benchmarks where all
inputs are replaced by nondeterministic values. We also use
a cubic equation solver from the MiBench [41] suite. The
HLS suite [33] contains programs that implement the
encoder and decoder of the adaptive differential pulse
code modulation (ADPCM).

The NXP [40] benchmarks are taken from the set-top box
of NXP Semiconductors that is used in high definition
internet protocol and hybrid digital TV applications. The
embedded software of this platform relies on the Linux
operating system and makes use of different applications
such as 1) LinuxDVB that is responsible for controlling the
front end, tuners, and multiplexers, 2) DirectFB that
provides graphics applications and input device handling,
and 3) ALSA that is used to control the audio applications.

The NECLA [36] and VERISEC [34] benchmarks are not
specifically related to embedded software, but they allow us
to check ESBMC’s error-detection capability easily since
they provide ANSI-C programs with and without known
bugs. Here, we use the suffix “-bad” to denote the subset
with seeded errors and “-ok” to denote the supposedly
correct (“golden”) versions. The programs make use of
dynamic memory allocation, interprocedural dataflow,
aliasing, pointers, typecasts, and string manipulation. In
addition, we used some programs from the well-known
Siemens [39] test suite, including pattern matching and
string processing, statistics, and aerospace applications. The
EUREKA [3] benchmarks finally contain programs that
allow us to assess the scalability of the model checking tools
on problems of increasing complexity [3].

All experiments were conducted on an otherwise idle
Intel Xeon 5160, 3 GHz server with 4 GB of RAM running
Linux OS. For all benchmarks, the time limit has been set
to 3,600 seconds for each individual property. All times
given are wall clock time in seconds as measured by the
unix time command.

4.2 Comparison of SMT Solvers

As a first step, we compared to which extent the SMT
solvers support the domain theories that are required for
SMT-based BMC of ANSI-C programs. For this purpose,
we analyzed the SMT solvers Boolector (V1.4), CVC3
(V2.2), and Z3 (V2.11). In the theory of linear and nonlinear
arithmetic, CVC3 and Z3 do not support the remainder
operator, but they allow us to use axioms to define it.
Currently, Boolector does not support the theory of linear
and nonlinear arithmetic at all. In the theory of bit-vectors,
CVC3 does not support the division and remainder
operators for bit-vectors representing signed and unsigned
integers. However, in all cases, axioms can be used in
order to define the missing operators. Boolector and Z3
support all word-level, bit-level, relational, arithmetic
functions over unsigned and signed bit-vectors. In the
theories of arrays and tuples, the verification problems only
involve selecting and storing elements from/into arrays
and tuples, respectively, and both domains thus comprise
only two operations. These operations are fully supported
by CVC3 and Z3; Boolector supports only the theory of
arrays but not that of tuples.

We then used 15 ANSI-C programs to compare the
performance of Boolector, CVC3, and Z3 as ESBMC back
ends. Programs 1-8 allow us to assess the scalability of the
model checking tools on problems of increasing complexity
[3] and programs 9-15 contain typical ANSI-C constructs
found in embedded software, i.e., they contain linear and
nonlinear arithmetic and make heavy use of bit operations.

Table 1 shows the results of the comparison. Here, L is
the number of lines of code, B the unwinding bound, and P
the number of properties verified for each ANSI-C program.
We checked for language-specific safety properties (e.g.,
pointer safety, array bounds, division by zero) as well as
user-specified properties. For each solver, we provide the
total time (in seconds) to check all properties of each
program at the same time, using the specified unwinding
bound, as well as the solver time itself. The difference
between both times is spent in the ESBMC front end. In
addition, we provide (in brackets) the timings using the
SMT-LIB interface instead of the native API of the solver.
The fastest time for each program is shown in bold. We also
indicate whether ESBMC fails during the verification
process, either due to a time-out (T) or due to memory
overflow (M). All failures occurred in the back end (i.e.,
solver), which is indicated by the subscript b.

As we can see in Table 1, if we use the native API of the
solvers, Z3 usually runs slightly faster than Boolector and
CVC3; however, both CVC3 and Boolector are faster for
some programs. Generally, the differences between the
solvers (in particular between Boolector and Z3) are small,
although CVC3 fails for some examples. If we use the SMT-
LIB interface, the situation changes, and Boolector runs
slightly faster than Z3 and CVC3. However, similarly to the

CORDEIRO ET AL.: SMT-BASED BOUNDED MODEL CHECKING FOR EMBEDDED ANSI-C SOFTWARE 967

case of the native API, it is not always the fastest solver;
again, the differences are generally small, and even smaller
than when using the native API.

Generally, the native API is slightly faster than the SMT-
LIB interface, although the difference is small. However,
there are a few notable exceptions. Using the SMT-LIB
interface, CVC3 scales better for BubbleSort and SelectionSort,
but slows down substantially for StrCmp and SumArray. We
manually inspected the respective VCs and found that their
structure is essentially the same. We conclude that the SMT-
LIB interface of CVC3 lacks some optimization during the
preprocessing. Similarly, Boolector speeds up for Insertion-
Sort using the SMT-LIB API, but the structure of the VCs
using both APIs is also the same; similarly, we conclude
that the SMT-LIB interface enables some optimization
during the preprocessing.

We decided to continue the development with Z3 and
Boolector using both the native and SMT-LIB APIs since
CVC3 does not scale so well and fails to check the three
benchmarks BubbleSort, SelectionSort, and MinMax.

4.3 Performance Improvement

We evaluate the effectiveness of the simplification techni-
ques described in Section 3.4 using 174 programs, with a total
size of 70K lines of code, taken from the benchmark suites
Siemens, SNU-RT, PowerStone, NECLA, and NXP. With all
optimizations enabled, ESBMC can check all 174 programs in
439 seconds, which serves as our baseline. We then evaluate
the effect of the simplifications by disabling them one at a
time as follows: constant propagation of store operations for
arrays, structs, and unions (CPstore); constant propagation
for constant strings (CPString); forward substitution (FS);

and removal of functionally redundant literals and variables
(FRLV). We set the time-out to 180 seconds because it is the
longest time to check a given program with all optimizations
enabled.

Surprisingly, ESBMC performs better when we disable
the removal of functionally redundant literals and variables
(FRLV) and checks all 174 programs in 423 seconds. We can
thus conclude that the SMT solvers already eliminate the
functionally redundant literals and variables during the
preprocessing phase in a more efficient way. Fortunately, all
other simplifications pay off. Using CPstore, ESBMC checks
170 programs in 1,059 seconds and times out in four
programs. With CPString, it checks 173 programs in
590 seconds and times out in one program, and with FS, it
checks 171 programs in 972 seconds and times out in three
programs. The optimizations are complementary in the sense
that disabling each one of them causes ESBMC to time out on
different programs. Moreover, their effect is not only
restricted to the programs that ESBMC fails to check when
they are disabled: On the remaining 166 programs, disabling
CPstore causes an average slow down of more than 30 percent,
although the effects are less pronounced, or even reversed,
for disabling CPString and FS, with a slow down of
approximately 8 percent and a speedup of approximately 4
percent, respectively.

4.4 Error-Detection Capability

As a third step, we analyze to which extent ESBMC is able
to handle and detect errors in standard ANSI-C bench-
marks. Table 2 summarizes the results. Here, N is the
number of programs in the benchmark suite, while �L and
�P give its total size (in lines of code) and the total number

968 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

TABLE 1
Results of the Comparison between CVC3, Boolector, and Z3

Time-outs are represented with T in the Time column; examples that exceed available memory are represented with M in the Time column.

of claims checked, respectively. The table again shows both
the solver and total verification time. In the last three
columns, Ne is the number of programs in which ESBMC
has detected violations of safety properties and user-
specified assertions, “true” reports the number of property
violations that correspond to true, confirmed faults, “false”
reports the number of false negatives produced by ESBMC.

The EUREKA suite only contains correct programs.
However, in the NECLA and VERISEC suites, ESBMC is
able to detect errors related to buffer overflow, aliasing,
dynamic memory allocation, and string manipulation; in
particular, it detects all seeded errors in the versions
NECLA-bad and VERISEC-bad. Moreover, ESBMC could
verify two programs that were originally in NECLA-bad
but did not contain any seeded errors; the benchmark
creators confirmed that these programs were misclassified
and subsequently changed the error seeding.

Surprisingly, ESBMC also detects errors in the suppo-
sedly correct golden versions. In NECLA-ok, ESBMC finds
three property violations in two programs, which have
been confirmed as true faults by the benchmark creators
[46]. The first is an array bounds violation, caused by an
indexing expression x%32 that can become negative for
negative inputs x. The other two are also related to array
bounds violations, but are caused by repeated in-place
updates of a buffer using the strcat-function, which also
appends a new NULL-character at the end of the new string
formed by the concatenation of both arguments; this NULL-
character then causes the violation in the last iteration of the
loop. In VERISEC-ok, ESBMC finds 15 property violations
in nine programs, which have also been confirmed by the
benchmark creators [47]. All violations are related to
arithmetic overflow on the typecast operation caused by
assignments of the form c ¼ i, where c is declared as a char
and i as an int.

In the WCET test suite, ESBMC finds four property
violations in two programs, which we inspected manually.
Two violations point to possible overflows that stem from
assignments between incompatible data types (e.g., long int
versus int), which are indeed errors; a further violation
points to a potential division by zero error, which is
unlikely to be uncovered by testing as it requires an entire
array to be randomly initialized with zeroes. The final

property indicates an arithmetic overflow in an expression
StopTime-StartTime, but this is a false negative since both
variables are guaranteed to be positive at runtime and,
moreover, StopTime is always larger than StartTime. This
false negative can be suppressed by adding an assumption
on the return values to the ttime-function that is used to
compute both variables. Finally, ESBMC finds array bounds
violations and overflows in arithmetic expressions in four of
the SNU-RT benchmarks and invalid pointers in one of the
PowerStone benchmarks; we confirmed by inspection that
these are indeed faults.

4.5 Comparison to SMT-CBMC

This section describes the evaluation of ESBMC against
another SMT-based BMC tool developed by Armando et al.
[3]. For the evaluation, we took the official benchmark of
the SMT-CBMC tool [35]; Table 3 summarizes the results.
The timings in brackets again refer to the SMT-LIB
interface. Note that results given for ESBMC differ from
those in Table 1: Since SMT-CBMC does not generate any
checks for safety properties, we used both systems only to
check the single user-specified property. SMT-CBMC has
been invoked by setting manually the file name and the
unwinding bound (i.e., SMT-CBMC -file Module -bound
B). Furthermore, we compared SMT-CBMC with its default
solver (i.e., CVC3 2.2) against ESBMC using both its default
solver (i.e., Z3 2.11) as well as CVC3 2.2.

If CVC3 is used as the SMT solver, both tools run out
of memory and thus fail to analyze BubbleSort for large N
(N ¼ 140). SMT-CBMC runs out of time when analyzing
the program SelectionSort and StrCmp, while ESBMC runs
out of time for the program MinMax. ESBMC outperforms
SMT-CBMC by a factor of 6-90 for those benchmarks that
do not fail. However, if Z3 is used as solver for ESBMC,
the difference between both tools becomes more noticeable
and ESBMC generally outperforms SMT-CBMC by a factor
of 10-200.

4.6 Comparison to SAT-Based CBMC

CBMC [11] is one of the most widely used BMC tools for
ANSI-C. It has recently been extended by an SMT back end
[6], and in our comparison we tried to use the SMT solvers
Z3 and Boolector (by invoking –z3 or –boolector) for
evaluating both tools CBMC and ESBMC. However, the

CORDEIRO ET AL.: SMT-BASED BOUNDED MODEL CHECKING FOR EMBEDDED ANSI-C SOFTWARE 969

TABLE 2
Results of the Error-Detection Capability of ESBMC

SMT-based CBMC version failed to check all benchmarks
reported in Table 4 due to problems in the SMT back end.
Consequently, we compare our approach only against the
SAT-based CBMC version, which is able to support most of
the benchmarks from Table 4; in particular, we compared
CBMC v3.8 and ESBMC v1.15. We invoked both tools by
manually setting the file name, the unwinding bound, the
checks for array bounds, pointer safety, division by zero,
and arithmetic over and underflow.2 Table 4 reports the
results in the usual format.

As we can see in Table 4, SAT-based CBMC is not able to
check the module pocsag due to memory limitations; it times
out in five cases and fails in four cases due to errors in the
front end, and in another five cases due to errors in the back
end. ESBMC runs out of time to check the modules qurt and
ludcmp, but it is able to check seven (of eight) properties of
the module qurt and 15 additional benchmarks in compar-
ison to SAT-based CBMC. Both CBMC and ESBMC find
errors in the SNU-RT (as confirmed in Section 4.4) and NXP
benchmark suites. However, ESBMC finds additional
confirmed errors (see Section 4.4 again) in the WCET,
SNU-RT, and PowerStone benchmarks, while CBMC
produces false negatives or fails. In the case of print_tokens2,
ESBMC runs out of memory if we try to increase the
unwinding bound to 82, but if we restrict the verification to
the function get_token, it finds an array-bounds violation in
the golden version. We extracted the counterexample
provided by ESBMC and used it to confirm that this is a
true fault. ESBMC also finds additional errors in flasher_ma-
nager (violation of a user-specified assertion), exStbHwAcc
(arithmetic overflow on typecast), and adpcm_encode (array-
bounds violation) applications. Moreover, SAT-based
CBMC also produces false negatives for the golden version
of the programs ex30 and ex33 by reporting nonexisting
bugs related to dynamic object upper bounds and invalid
pointers. We can also see that ESBMC not only has a better
precision than SAT-based CBMC, but it also runs slightly
faster than the SAT-based CBMC in those benchmarks that

it does not fail. The results in Table 4 thus allow us to assess
quantitatively that ESBMC substantially improves precision
and scales significantly better than CBMC for problems that
involve tight interplay between nonlinear arithmetic, bit
operations, pointers, and array manipulations, which are
typical for embedded systems software.

5 RELATED WORK

SMT-based BMC is gaining popularity in the formal
verification community due to the advent of sophisticated
SMT solvers built over efficient SAT solvers [16], [17], [18].
Previous work related to SMT-based BMC [3], [4], [48]
combined decision procedures for the theories of unin-
terpreted functions, arrays, and linear arithmetic only, but
did not encode key constructs of the ANSI-C programming
language such as bit operations, floating-point arithmetic,
and pointers.

Ganai and Gupta describe a verification framework for
BMC which extracts high-level design information from an
extended finite state machine (EFSM) and applies several
techniques to simplify the BMC problem [4], [24]. However,
the authors flatten structures and arrays into scalar variables
in such a way that they use only the theory of integer and
real arithmetic in order to solve the VCs. Armando et al. also
propose a BMC approach using SMT solvers for C programs
[3]. However, they only make use of linear arithmetic (i.e.,
addition and multiplication by constants), arrays, records,
and bit-vectors in order to solve the VCs. As a consequence,
their SMT-CBMC prototype does not address important
constructs of the ANSI-C programming language such as
nonlinear arithmetic and bit-shift operations. Kroening also
encodes the VCs generated by the front end of CBMC by
using the bit-vector arithmetic and does not exploit other
background theories of the SMT solvers to improve
scalability [6]. Donaldson et al. present an approach to
compute invariants in BMC of software by means of
k-induction [49]. Their method, however, is highly custo-
mized for checking assertions representing DMA operations
in the Cell processor, which requires only a small number of
loop iterations and thus allows k-induction to work well
with a small value of k. Xu proposes the use of SMT-based

970 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

2. The tools where invoked as follows: cbmc file - -unwind
B - -bounds-check - -div-by-zero-check - -pointer-check
- -overflow-check - -string-abstraction and esbmc file

- -unwind B - -overflow-check - -string-abstraction.

TABLE 3
Results of the Comparison between ESBMC and SMT-CBMC

BMC to verify real-time systems by using TCTL to specify

the properties [48]. The author considers an informal

specification (written in English) of the real-time system

and then models the variables using integers and reals and

represents the clock constraints using linear arithmetic

expressions.
De Moura et al. present a bounded model checker that

combines propositional SAT solvers with domain-specific

theorem provers over infinite domains [50]. Differently

from other related work, the authors abstract the Boolean

formula and then apply a lazy approach to refine it in an

incremental way. This approach is applied to verify timed

automata and RTL level descriptions. Jackson et al. [51]

discharge several VCs from programs written in the Spark
language to the SMT solvers CVC3 and Yices as well as to

the theorem prover Simplify. The idea of this work is to
replace the Praxis prover by CVC3, Yices, and Simplify in
order to generate counterexample witnesses to VCs that are

not valid. In [52], Jackson and Passmore extend [51] by
implementing a tool to automatically discharge VCs using
SMT solvers. The authors observed significant performance

improvement of the SMT solvers when compared to the
Praxis prover. Jackson and Passmore, however, focus on
translating VCs into SMT from programs written in the

SPARK language (which is a subset of the Ada language)
instead of ANSI-C programs.

CORDEIRO ET AL.: SMT-BASED BOUNDED MODEL CHECKING FOR EMBEDDED ANSI-C SOFTWARE 971

TABLE 4
Results of the Comparison between CBMC and ESBMC

Internal errors in the respective tool are represented with y in the Time column. The subscripts f and b indicate whether the errors occurred in the
front end or back end, respectively. We give the smallest unwinding bound that is sufficient to prove or falsify the properties (i.e., produces no
unwinding violation); a superscript � on the unwinding bound indicates that the bound is insufficient, but cannot be increased with the available
memory.

Software model checking is executed on an abstraction
of the actual program. Model checking the abstraction of a
program is sound, but necessarily incomplete. Abstraction
refinement is a general technique for proving properties
with software model checkers [60]. Thus, abstraction
refinement allows extending the usual bug-hunting uses
of software model checkers. In practice, a well-known
approach is counter-example-guided abstraction refine-
ment (CEGAR) [64]. A number of approaches have been
developed for CEGAR [60], including interpolation [63].
Examples of modern software model checkers implement-
ing CEGAR with interpolation include BLAST [62] and
ARMC [61].

Recently, a number of static checkers have been devel-
oped in order to trade off scalability and precision. Calysto
is an automatic static checker that is able to verify VCs
related to arithmetic overflow, null-pointer dereferences,
and assertions specified by the user [53]. The VCs are
passed to the SMT solver SPEAR, which supports boolean
logic, bit-vector arithmetic, and is highly customized for the
VCs generated by Calysto. However, Calysto does not
support floating-point operations and unsoundly approx-
imates loops by unrolling them only once. As a conse-
quence, soundness is relinquished for performance. Saturn
is another automatic static checker that scales to larger
systems, but with the drawback of losing precision by
supporting only the most common integer operators and
performing at most two unwindings of each loop [54]. In
contrast to [53], [54], the extended static checker for Java
(ESC/JAVA) is a semi-automatic verification tool which
requires the programmer to supply loop, function, and class
invariants and thus limits its acceptance in practice [55]. In
addition, ECS/Java employs the Simplify theorem prover
[56] to verify user-supplied invariants and thus important
constructs of the programming language (e.g., bitwise
operation) are often encoded imprecisely using axioms
and uninterpreted functions.

6 CONCLUSIONS

In this work, we have investigated SMT-based verification
of ANSI-C programs, with a focus on embedded software.
We have described a new set of encodings that allow us to
reason accurately about bit operations, unions, fixed-point
arithmetic, pointers, and pointer arithmetic and implemen-
ted it in the ESBMC tool. Our experiments constitute, to the
best of our knowledge, the first substantial evaluation of
SMT-based BMC on industrial applications. The results
show that ESBMC outperforms CBMC [11] and SMT-CBMC
[3] if we consider the verification of embedded software.
ESBMC is able to model check ANSI-C programs that
involve tight interplay between nonlinear arithmetic, bit
operations, pointers, and array manipulations. In addition,
it was able to find undiscovered bugs in the NECLA,
PowerStone, Siemens, SNU-RT, VERISEC, and WCET
benchmarks related to arithmetic overflow, buffer overflow,
invalid pointers, and pointer arithmetic.

SMT-CBMC still has limitations not only in the verifica-
tion time (due to the lack of simplification based on high-
level information), but also in the encodings of important
ANSI-C constructs used in embedded software. CBMC is a

SAT-based BMC tool for full ANSI-C, but it has limitations
due to the fact that the size of the propositional formulas
increases significantly in the presence of large data paths
and high-level information is lost when the VCs are
converted into propositional logic (preventing potential
optimizations to reduce the state space to be explored). Its
prototype SMT-based back end is still unstable and fails on
a large fraction of our benchmarks.

We are currently extending ESBMC to support the
verification of multithreaded software in embedded sys-
tems [57], [58]. For future work, we also intend to
investigate the application of termination analysis [59] and
incorporate reduction methods to simplify the k-model.

ACKNOWLEDGMENTS

The authors thank D. Kroening, C. Wintersteiger, and
L. Platania for many helpful discussions about the CBMC
and SMT-CBMC model checking tools, C. Barrett,
R. Brummayer, and L. de Moura for analyzing the VCs,
and F. Ivancic and M. Chechik for checking the bugs
discovered in the NECLA and VERISEC suites. They also
thank the anonymous reviewers for their comments, which
helped them to improve the draft version of this paper.
This research was supported by EPSRC grants EP/
E012973/1 (NOTOS) and EP/F052669/1 (Cadged Code)
and by the EC FP7 grants ICT/217069 (COCONUT) and
IST/033709 (VERTIGO). Lucas Cordeiro was also sup-
ported by an ORSAS studentship.

REFERENCES

[1] A. Biere, “Bounded Model Checking,” Handbook of Satisfiability,
pp. 457-481, IOS Press, 2009.

[2] A. Armando, J. Mantovani, and L. Platania, “Bounded Model
Checking of Software Using SMT Solvers Instead of SAT Solvers,”
Proc. SPIN, pp. 146-162, 2006.

[3] A. Armando, J. Mantovani, and L. Platania, “Bounded Model
Checking of Software Using SMT Solvers Instead of SAT Solvers,”
Int’l J. Software Tools Technology Transfer, vol. 11, no. 1, pp. 69-83,
2009.

[4] M.K. Ganai and A. Gupta, “Accelerating High-Level Bounded
Model Checking,” Proc. Int’l Conf. Computer-Aided Design, pp. 794-
801, 2006.

[5] ISO/IEC 9899:1999: Programming Languages C. Int’l Organization
for Standardization, 1999.

[6] D. Kroening, CBMC 3.3 Released—Preliminary Support for SMT
QF_AUFBV, http://groups.google.co.uk/group/cprover, The
CProver Group, 2009.

[7] L. Cordeiro, B. Fischer, and J. Marques-Silva, “SMT-Based
Bounded Model Checking for Embedded ANSI-C Software,”
Proc. Int’l Conf. Automated Software Eng., pp. 137-148, 2009.

[8] L. Cordeiro, B. Fischer, and J. Marques-Silva, “Continuous
Verification of Large Embedded Software Using SMT-Based
Bounded Model Checking,” Proc. Int’l Conf. and Workshops Eng.
Computer-Based Systems, pp. 160-169, 2010.

[9] SMT-LIB, The Satisfiability Modulo Theories Library, http://
combination.cs.uiowa.edu/smtlib, 2009.

[10] A. Stump and M. Deters, Satisfiability Modulo Theories Competition,
http://www.smtcomp.org/, 2010.

[11] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-
C Programs,” Proc. Int’l Conf. Tools and Algorithms for the
Construction and Analysis of Systems, pp. 168-176, 2004.

[12] C. Wintersteiger, Compiling GOTO-Programs, http://www.
cprover.org/goto-cc/, 2009.

[13] R.L. Sites, “Some Thoughts on Proving Clean Termination of
Programs,” technical report, Stanford, Calif., 1974.

[14] A.R. Bradley and Z. Manna, The Calculus of Computation: Decision
Procedures with Applications to Verification. Springer, 2007.

972 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

[15] M. Bozzano et al., “Encoding RTL Constructs for MathSAT: A
Preliminary Report,” Electrical Notes in Theoretical Computer
Science, vol. 144, no. 2, pp. 3-14, 2006.

[16] C. Barrett and C. Tinelli, “CVC3,” Proc. Int’l Conf. Computer Aided
Verification, pp. 298-302, 2007.

[17] R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver
for Bit-Vectors and Arrays,” Proc. Int’l Conf. Tools and Algorithms
for the Construction and Analysis of Systems, pp. 174-177, 2009.

[18] L.M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,”
Proc. Int’l Conf. Tools and Algorithms for the Construction and
Analysis of Systems, pp. 337-340, 2008.

[19] J. Mccarthy, “Towards a Mathematical Science of Computation,”
Proc. Int’l Federation of Information Processing Congress, pp. 21-28,
1962.

[20] S.S. Muchnick, Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers, Inc., 1997.

[21] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman, “Compu-
tational Challenges in Bounded Model Checking,” Software Tools
for Technology Transfer, vol. 7, no. 2, pp. 174-183, 2005.

[22] L.M. de Moura and N. Bjørner, “Satisfiability Modulo Theories:
An Appetizer,” Proc. Brazilian Symp. Formal Methods, pp. 23-36,
2009.

[23] E. Clarke, D. Kroening, O. Strichman, and J. Ouaknine, “Com-
pleteness and Complexity of Bounded Model Checking,” Proc.
Int’l Conf. Verification, Model Checking, and Abstract Interpretation,
pp. 85-96, 2004.

[24] M.K. Ganai and A. Gupta, “Completeness in SMT-Based BMC for
Software Programs,” Proc. Conf. Design, Automation and Test in
Europe, pp. 831-836, 2008.

[25] A.S. Tanenbaum, Computer Networks, fourth ed. Prentice-Hall, Inc.,
2002.

[26] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “Predicate
Abstraction of ANSI-C Programs Using SAT,” Formal Methods in
System Design, vol. 25, pp. 105-127, 2004.

[27] S.-S. Lim, Seoul Nat’l Univ. Real-Time Benchmarks Suite, http://
archi.snu.ac.kr/realtime/benchmark/, 2009.

[28] D. Kroening and O. Strichman, Decision Procedures: An Algorithmic
Point of View. Springer, 2008.

[29] D. Gries and G. Levin, “Assignment and Procedure Call Proof
Rules,” ACM Trans. Programming Languages and Systems, vol. 2,
no. 4, pp. 564-579, 1980.

[30] D. Kroening, E. Clarke, and K. Yorav, “Behavioral Consistency of
C and Verilog Programs Using Bounded Model Checking,”
technical report, CMU-CS-03-126, Carnegie Mellon Univ., 2003.

[31] J.A. Clause and A. Orso, “Leakpoint: Pinpointing the Causes of
Memory Leaks,” Proc. IEEE/ACM 32nd Int’l Conf. Software Eng.,
vol. 1, pp. 515-524, 2010.

[32] D. Kroening and S.A. Seshia, “Formal Verification at Higher
Levels of Abstraction,” Proc. Int’l Conf. Computer-Aided Design,
pp. 572-578, 2007.

[33] S. Gupta, High Level Synthesis Benchmarks Suite, http://mesl.
ucsd.edu/spark/benchmarks.shtml, 2009.

[34] K. Ku, T.E. Hart, M. Chechik, and D. Lie, “A Buffer Overflow
Benchmark for Software Model Checkers,” Proc. Int’l Conf.
Automated Software Eng., pp. 389-392, 2007.

[35] L. Platania, Eureka Benchmark Suite, http://www.ai-lab.it/
eureka/bmc.html, 2009.

[36] S. Sankaranarayanan, NECLA Static Analysis Benchmarks, http://
www.nec-labs.com/research/system/, 2009.

[37] J. Scott, L.H. Lee, A. Chin, J. Arends, and B. Moyer, “Designing the
Low-Power m*Core Architecture,” Proc. Int’l Symp. Computer
Architecture Power Driven Microarchitecture Workshop, pp. 145-150,
1998.

[38] A. Ermedahl and J. Gustafsson, Worst-Case Execution Time Project/
Benchmarks, http://www.mrtc.mdh.se/projects/wcet/, 2009.

[39] T. Ostrand, Siemens Corporate Research, http://sir.unl.edu/portal/,
2010.

[40] NXP, High Definition IP and Hybrid DTV Set-Top Box STB225,
http://www.nxp.com/, 2009.

[41] MiBench Version 1.0, http://www.eecs.umich.edu/mibench/,
2009.

[42] A. Biere, “Picosat Essentials,” J. Satisfiability, Boolean Modeling and
Computation, vol. 4, nos. 2-4, pp. 75-97, 2008.

[43] M. Ramanathan, Flex, http://sir.unl.edu/portal/, 2010.
[44] J. Morse, Kerberos Git, https://www.studentrobotics.org/trac/

wiki/Kerberos/Git, 2011.

[45] N.L. Vinh, The Flasher Manager Application, http://users.polytech.
unice.fr/rueher/Benchs/FM/, 2010.

[46] F. Ivancic, personal communication, 2011.
[47] M. Chechik, personal communication, 2011.
[48] L. Xu, “SMT-Based Bounded Model Checking for Real-Time

Systems,” Proc. Int’l Conf. Quality Software, pp. 120-125, 2008.
[49] A. Donaldson, D. Kroening, and P. Rümmer, “Automatic Analysis

of Scratch-Pad Memory Code for Heterogeneous Multicore
Processors,” Proc. Int’l Conf. Tools and Algorithms for the Construc-
tion and Analysis of Systems, pp. 280-295, 2010.

[50] L.M. de Moura, H. Rueß, and M. Sorea, “Lazy Theorem Proving
for Bounded Model Checking over Infinite Domains,” Proc. Int’l
Conf. Automated Deduction, pp. 438-455, 2002.

[51] P.B. Jackson, B.J. Ellis, and K. Sharp, “Using SMT Solvers to Verify
High-Integrity Programs,” Proc. Second Workshop Automated Formal
Methods, pp. 60-68, 2007.

[52] P.B. Jackson and G.O. Passmore, Proving SPARK Verification
Conditions with SMT Solvers, technical report, Univ. of Edinburgh,
http://homepages.inf.ed.ac.uk/pbj/papers/vct-dec09-draft.pdf,
2009.

[53] D. Babi�c and A.J. Hu, “Calysto: Scalable and Precise Extended
Static Checking,” Proc. IEEE/ACM Int’l Conf. Software Eng.,
pp. 211-220, 2008.

[54] Y. Xie and A. Aiken, “Scalable Error Detection Using Boolean
Satisfiability,” SIGPLAN Notices, vol. 40, pp. 351-363, 2005.

[55] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe,
and R. Stata, “Extended Static Checking for Java,” Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation,
pp. 234-245, 2002.

[56] D. Detlefs, G. Nelson, and J.B. Saxe, “Simplify: A Theorem Prover
for Program Checking,” J. ACM, vol. 52, no. 3, pp. 365-473, 2005.

[57] L. Cordeiro, “SMT-Based Bounded Model Checking for Multi-
Threaded Software in Embedded Systems,” Proc. ACM/IEEE 32nd
Int’l Conf. Software Eng., pp. 373-376, 2010.

[58] L. Cordeiro and B. Fischer, “Verifying Multi-Threaded Software
Using SMT-Based Context-Bounded Model Checking,” Proc.
ACM/IEEE 33rd Int’l Conf. Software Eng., pp. 331-340, 2011.

[59] R.C. Andreas, B. Cook, A. Podelski, and A. Rybalchenko,
“Terminator: Beyond Safety,” Proc. Int’l Conf. Computer Aided
Verification, pp. 415-418, 2006.

[60] R. Jhala and R. Majumdar, “Software Model Checking,” ACM
Computing Surveys, vol. 41, no. 4, pp. 1-54, 2009.

[61] A. Podelski and A. Rybalchenko, “ARMC: The Logical Choice for
Software Model Checking with Abstraction Refinement,” Proc.
Ninth Int’l Symp. Practical Aspects of Declarative Languages, pp. 245-
259, 2007.

[62] D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar, “The Software
Model Checker Blast,” Int’l J. Software Tools Technology Transfer,
vol. 9, nos. 5/6, pp. 505-525, 2007.

[63] K. McMillan, “Interpolation and Sat-Based Model Checking,”
Proc. Int’l Conf. Computer Aided Verification, pp. 1-13, 2003.

[64] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counter-
example-Guided Abstraction Refinement,” Proc. Int’l Conf. Com-
puter Aided Verification, pp. 154-169, 2000.

Lucas Cordeiro received the BSc degree in
electrical engineering and the MSc degree in
computer engineering from the Federal Univer-
sity of Amazonas (UFAM) in 2005 and 2007,
respectively. He also received the PhD degree in
computer science from the University of South-
ampton in 2011. Currently, he is an assistant
professor in the Electronic and Information
Research Center at UFAM. His work focuses
on software verification, bounded (and un-

bounded) model checking, satisfiability modulo theories, and embedded
systems.

CORDEIRO ET AL.: SMT-BASED BOUNDED MODEL CHECKING FOR EMBEDDED ANSI-C SOFTWARE 973

Bernd Fischer received the PhD degree in
computer science from the University of Passau,
Germany, in 2001. From 1998 to 2006, he was a
research scientist with USRA/RIACS at the
NASA Ames Research Center. Since 2006 he
has been a senior lecturer for computer science
at the University of Southampton. His current
research interests include code generation,
programming languages, formal methods, soft-
ware reliability, and software verification.

Joao Marques-Silva received the PhD degree
from the University of Michigan, Ann Arbor, in
1995, and the Habilitation degree in computer
science from the Technical University of Lisbon
in 2004. He is currently the Stokes Professor of
Computer Science and Informatics at University
College Dublin (UCD), Ireland. He is also a
professor of computer science at the Instituto
Superior Tecnico (IST), Portugal. His research
interests include algorithms for constraint sol-

ving and optimization, and applications in formal methods, artificial
intelligence, operations research, and bioinformatics. He is a senior
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

974 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

