Interactive Tag Cloud Visualization of Software
Version Control Repositories

Gillian J. Greene and Bernd Fischer
CSIR, Meraka, Centre for Artificial Intelligence Research
Computer Science Division
Stellenbosch University, South Africa
ggreene @cs.sun.ac.za, bfischer@cs.sun.ac.za

Abstract—Version control repositories contain a wealth of
implicit information that can be used to answer many questions
about a project’s development process. However, this information
is not directly accessible in the version control archives and must
be extracted and visualized. This paper describes ConceptCloud,
a flexible, interactive browser for SVN and Git repositories. The
main novelty of our approach is the combination of an intuitive
tag cloud visualization with an underlying concept lattice that
provides a formal structure for navigation. ConceptCloud sup-
ports concurrent navigation in multiple linked but individually
customizable tag clouds, which allows for multi-faceted repository
browsing and for the construction of unique visualizations. We
describe the mathematical foundations and implementation of
our approach, and use ConceptCloud to quickly gain insight
into the team structure and development process of two projects.

I. INTRODUCTION

Version control repositories contain a wealth of implicit
information that can be used to answer many questions about
a project’s development process, such as “Who worked on
these files?”, “Which developers collaborate?”, “What are the
co-changed methods?”, or “What has happened in this project
while I was away?”. Answering such questions is a daily task
for software developers [1] but version control systems are not
set up to make the necessary information easily accessible.

There are already many repository mining tools, such as
Codebook [2], Hipikat [3], or the Information Fragments
prototype [4], that use processed software repository data
to show specific aspects of a project. However, when users
do not yet know what information they are looking for or
have no previous knowledge of a project, the task becomes
one of exploratory search [5] rather than mining. Therefore,
we propose an interactive tag cloud visualization of software
repositories in order to let users explore the information
implicitly contained in these repositories. Tag clouds support
browsing or exploratory search tasks and have been found
to be effective when the information discovery task is wide
[6]. Our interactive tag clouds familiarize users with all of
the repository’s data, allowing them to construct more refined
views as they explore and learn more about the repository.

Tag clouds are a simple visualization method for textual data
where the importance of each tag (typically its frequency) is
reflected in its size. We generate tags directly from the data
that we extract from software repositories, instead of relying
on user-generated labels for particular content, as commonly

978-1-4673-7526-9/15/$31.00 © 2015 IEEE

56

used in Web 2.0 applications. The data available in a version
control archive is often large (500000+ revisions for Linux, see
https://github.com/torvalds/linux) and so we allow the user to
make incremental refinements in the tag cloud visualization in
order to generate smaller, more detailed visualizations.

Navigation using tag clouds has previously been explored
using a Bayesian approach [7]; however, navigation in our
browser is supported by a novel combination of tag clouds
and formal concept lattices [8], [9], [10]. Concept lattices have
been shown to be useful for browsing data [11], [12], [13]
but large lattices do not provide a suitable data visualization
because the relationships between the concepts are difficult to
identify in a large Hasse diagram.

Our navigation algorithm maintains a focus concept in the
underlying lattice. We derive the tag cloud visualization from
the current focus concept and update it after each navigation
step. Navigation is driven by the user’s selection (or de-
selection) of tags in the tag cloud (as shown in Fig. 1). By
using different objects in the formal contexts (see Section II-B)
that are used to construct formal concept lattices, we are able
to generate tag clouds that provide different perspectives on
the same underlying data in the same familiar visualization.
Existing repository visualizations implicitly hard-code the use
of revisions as objects. In contrast, our foundation in for-
mal concept analysis allows us to change the objects easily
to get different insights on the repository and to generate
visualizations that are distinctly not oriented towards time,
distinguishing our approach from previous work.

In this paper we develop an intuitive tag cloud interface for
the information represented in formal contexts (see Section
IV), and a refinement-based navigation algorithm based on
concept lattices (see Section II-D) that enables interactive
repository browsing through this interface. We have imple-
mented our approach in the ConceptCloud browser (available
at www.conceptcloud.org) and used this to perform two case
studies in Section V.

II. NAVIGATION FRAMEWORK

A. Formal Concept Analysis

Formal Concept Analysis (FCA) [8], [9], [10] uses lattice-
theoretic methods to investigate abstract relations between
objects and their attributes. Such contexts can be imagined

VISSOFT 2015, Bremen, Germany

Attributes
&

Objects
&~ Alice Bob 10/14 11/14 readme.txt build.xml hello.java

revision-1
revision-2 e—)
revision-3 ‘
revision-4
revision-5
revision-6

10/1411/14 10/14 w1« Alice build.xml

build.xml hello.java

readme. tXt revisiont revision? revision revisions

revision5 revisioné

‘\ Initial Focus

hello Jaw
-

build.xml

Vel

10/14 Alice build.xml hello.java

readme.txt revision1 revision2

hello.Java readme.txt revisiont revision2 revision3

Initial Tag Cloud \j Select “Alice” U Select “10/14”

Fig. 1: Navigating Concept Lattices with Tag Clouds: tag clouds correspond to the matching colored concepts in the lattice.

as cross tables where the rows are objects and the columns
are attributes (cf. Fig. 1).

Definition 1 A formal context is a triple (O, A,T) where O
and A are sets of objects and attributes, respectively, and
T C O x A is an arbitrary incidence relation.

Definition 2 Let (O, A,T) be a context, O C O, and A C A
The common attributes of O are defined by a(O) = {a €
A | Yo € O : (0,a) € I}, the common objects of A by
w(A)={0o€O|VYac A:(o,a) €T}

For example, the common attributes of the objects revision-1
and revision-2 in Fig. 1 are Alice, 10/14 and build.xml.

Concepts are pairs of objects and attributes which are syn-
onymous. They are maximal rectangles (modulo permutation
of rows and columns) in the context table. For example,
({revision1, revision2}, {Alice, 10/14, build.xmi}) in Fig. 1(ii) is
a concept, since adding another revision object loses common
attributes, while adding another attribute loses common ob-
jects.

Definition 3 Let C be a context. ¢ = (O,
concept of C iff «(O) = A and w(A) = O. wo(c) = O
and 7(c) = A are called ¢’s extent and intent, respectively.
The set of all concepts of C is denoted by B(C).

A) is called a

Concepts are partially ordered by inclusion of extents such
that a concept’s extent includes the extent of all of its subcon-
cepts; the intent-part follows by duality.

Definition 4 Let C be a context, c;
(OQ,AQ) € B

(01,4A1),¢2
(C). ¢1 and co are ordered by the subconcept

57

relation, ¢; < cg, iff O1 C Os. The structure of B(C) and <
is denoted by B(C).

The basic theorem of FCA states that the structure induced
by the concepts of a formal context and their ordering is
always a complete lattice. Such concept lattices have strong
mathematical properties and reveal hidden structural and hier-
archical properties of the original relation. They can be com-
puted automatically from any given relation between objects
and attributes. The greatest lower bound or meer and least
upper bound or join can also be expressed by the common
attributes and objects.

Theorem 5 ([8]) Let C be a context. Then B(C) is a complete
lattice, the concept lattice of C. Its meet and join operation for
any set I C B(C) of concepts are given by

)>

N (0i, 4)) (ﬂoz,a w(l J 4)

icl el
\/ (Oz, A (U O , n Az)
icl icl el

Each attribute and object has a uniquely determined defining
concept in the lattice. For example, the defining concept for
Alice is indicated in blue in the concept lattice in Fig. 1(ii). The
defining concepts can be calculated directly from the attribute
or object, respectively, and need not be searched in the lattice.

Definition 6 Ler B(O, A, Z) be a concept lattice. The defining
concept of an attribute a € A (object o € O) is the greatest
(smallest) concept ¢ such that a € ma(c) (0 € mo(c)) holds.

It is denoted by p(a) (o(0)). We use the 6(x) to denote u(x)
if « is an attribute and o(x) otherwise.

Efficient algorithms exist for the computation of the concept
lattices and the meet and join of concepts in the lattice.

B. Contexts from Repositories

In order to construct a concept lattice from repository data
we need a context table. The first step in the construction of
such a context table is to determine which field will be taken
as the object and which fields are suitable as attributes. We
use three object types, namely revisions, files and revision-file
pairs (changes) in order to construct different types of contexts,
which enables us to create different tag cloud visualizations
for the same repository, providing new insights on the data.

1) Revision-Based Contexts: In a revision-based context
we interpret the revisions, represented by their revision num-
ber, as objects and the commit meta-data (e.g., author or
words from the log message) as attributes; each revision is
associated with its own meta-data as attribute. This context
type represents the canonical view of repositories. Its concepts
are sets of revisions and their common attributes (e.g., all
revisions that include a common set of files). It is useful to
get a historical overview of a project.

2) File-Based Contexts: In a file-based context we interpret
the files as objects but derive the attributes from the revisions’
pre-processed meta-data; more precisely, each file receives all
attributes from all revisions that involve the file. Concepts from
such contexts are sets of files with common attributes (e.g.,
the set of all files on which a group of developers have all
worked); in particular, each commit induces a concept: since
a developer can only commit one set of files at any given
time, the set of committed files is maximal with respect to all
attributes derived from the commit meta-data.

Note that revision- and file-based contexts give complemen-
tary views on the repository. For example, the author tags from
a revision-based context are scaled according to the number
of revisions that the author has committed over the project
lifetime; during browsing only one author tag can be selected
at a time since each revision has only one author. In a file-
based context, the author tags are scaled according to how
many files a particular author has changed. Selecting an author
tag will reveal all collaborators, i.e., all other authors who
have also changed the same files. Selecting two author tags
will then reveal the extent of their collaboration, i.e., all files
they have both worked on.

3) Change-Based Contexts: In a change-based context we
use pairs of files and revisions as objects, so that for example
(hello.java, revision-1) and (hello.java , revision-3) become separate
objects in the context. This allows us to use the content of
the files as additional attributes, which we cannot do with
revision- or file-based contexts. In our implementation we
focus on the changes (rather than the entire contents), and use
a lightweight fact extractor [14] to get the signatures of the
changed methods from each file. We could therefore have, for
example the attributes public int equals(), public static void main(),

58

and Alice associated with the object (hellojava, revision-1) to
represent the fact that revision-1 by Alice changes the methods
equals() and main(). Selecting a method tag m then produces
a tag cloud which contains all other methods that have been
co-changed with m, scaled according to how often they have
been changed together (cf. Fig. 3a).

C. Tag Clouds from Concepts

We visualize repository data with a tag cloud that we
construct from the focus concept in the lattice. Since a concept
comprises a set of objects and a set of attributes, it is tempting
to use the attributes (i.e., the intent) as the tag cloud. However,
this produces degraded clouds because (¢) the intent only
contains the attributes common to all objects, and (¢7) each
attribute only occurs once so that all tags would have the same
size. Instead, we use the intents of the extents; more precisely,
we collect all attributes of the defining concept of each object
in the extent of the focus concept; we also add the objects
themselves, to allow their direct selection in the tag cloud.

(0,A) €

Definition 7 The tag cloud from a concept c
B(C) is defined as 7(c) = O WY, o mac(0).

Here W denotes multiset union. By construction, the objects
in the tag cloud induce subconcepts of the concept from which
the tag cloud was derived; moreover, all tags have a non-
bottom meet with that concept.

D. Navigating Concept Lattices with Tag Clouds

The browser maintains a focus concept, from which it
renders the tag cloud as described above; when the user selects
(or deselects) a tag, the browser updates the focus and re-
renders the tag cloud. The focus, or more precisely, its extent
contains the subset of objects in the repository that share all
currently selected tags. The initial focus (corresponding to
an empty selection set) is therefore the lattice’s top element,
whose extent contains the entire repository (c.f. Fig 1(i)).

Navigation is refinement-based: when the user selects an-
other tag, the browser updates the focus by computing the
meet of that tag’s defining concept and the old focus, rather
than recomputing it from the full selection set.

Intuitively, deselection should be the inverse of selection:
deselecting the last selected tag should move the focus back to
its previous position. It can however not be implemented by the
join operation, because this can lead to over-generalizations
and thus to counterintuitive results. For deselection, we must
therefore recompute the focus as the meet of the defining
concepts of the remaining selected tags.

E. Relation to Information Retrieval

Our lattice-based browsing approach is related to classical
information retrieval (IR) [15], [16]. The context table can be
seen as a boolean version of the document-term matrix, while
the concept lattice can be seen as representation of the usual
indexes: for each document the attributes of the object is the
set of terms that occur in the document, and for each term the
set of objects in its introducing concept is its inverted index

entry. If we see the selected tags as a conjunctive query, then
the focus’ extent is the query’s result.

The tag cloud can also be seen as the aggregation of the
boolean term frequencies for each document in the query
result, scaled according to the size of the document collection.
The concept lattice provides us with an efficient way to
compute this tag cloud; a computation from only the inverted
index would be impractically inefficient: we would first need
to retrieve all documents indexed by the selected tags, then
iterate over the entire vocabulary and compute the size of the
intersection of each term’s inverted index with the query’s
result. Hence, any efficient IR-based implementation must use
the same information in essentially the same way as our lattice-
based implementation. However, we can exploit the lattice
structure, e.g., to update the focus incrementally, or to show
which other tags are implied by the current selection set.

III. CoONCEPTCLOUD TOOL

We have implemented our approach in the ConceptCloud
browser which is a web application available at www.
conceptcloud.org. It comprises three main components that
extract meta-data from the revision control system (see below
for more details), construct a context table in the desired
format (see Section II-B), and display the tag cloud (see
Section IV) of the resulting lattice. ConceptCloud automates
the process of creating a tag cloud visualization from a version
control archive and its user interface supports customization of
the tag clouds. The browser is generic and can show tag clouds
of different context types. It is also completely automatic: there
are no manual pre-processing steps, and the user only needs to
enter the URL of the repository. A more detailed description
of the tool architecture and usage is available in [17].

ConceptCloud currently supports extraction of meta-data
and construction of context tables from SVN [18] and Git [19]
repositories, both locally and remotely. For Git repositories,
the hashes are converted into sequential revision numbers.
Both extractors support the revision-, file-, and change-based
contexts, as described in Section II-B. The construction of
change-based contexts requires the identification of methods
changed in consecutive versions, which requires the extraction
to be language-aware. Such contexts are currently limited to
Java files. The generated context tables can be saved in XML
format so that they can be loaded again without extraction.

For the lattice construction, we use a method based on the
Colibri/Java library [20] which constructs concepts on the fly.
We thus never need to compute the full lattice and are able to
render an initial tag cloud relatively quickly.

When we construct the context tables we pre-process the
meta-data that we extract from the revision control system,
in particular the log messages, file names, and commit times
from each revision in the repository. We segment each log
message into individual words, remove words on a default
stop list, and reduce each word to its stem, using the Apache
Lucene implementation of Porter’s [21] stemming algorithm.
Since the stem is not necessarily a proper word we take the

59

most frequently used word that evaluates to a given stem as
representative in the cloud.

We group both file names and commit times into in-
creasingly coarser bins. For file names, we decompose each
filename into a set of all path prefixes, similar to recursively
applying the Unix dirname command. For commit times,
we truncate the times at different precision levels (days,
months, and years). In addition, we also use aggregators to
capture regularities that appear across the bins, e.g., commit
patterns or similarities between identically named files such
as README.txt in different directories.

Note that we do not perform more complicated pre-
processing steps such as word sense disambiguation [22] or
identity merging [23]. We instead prefer to leave the user in
control of such decisions and plan to extend ConceptCloud’s
GUI to support merging and splitting of tags.

IV. TAG CLOUD VISUALIZATION

We make use of a tag cloud visualization that can be
customized to show different views on the repository. Multiple
different visualizations for different metrics were found to
confuse users [24]. We therefore propose one uniform visual-
ization that can be used to explore various different aspects of
a version control archive.

The simplest and most popular tag cloud layout [25] is as an
alphabetically sorted list of tags in a roughly rectangular shape
which was found by Schrammel et al. to perform better than
random or semantic layouts [26]; we use this layout because it
simplifies textual search within the tag cloud. We scale each
tag ¢ between the given minimum and maximum font sizes
Sfmin and fi,4., according to its weight ¢; in relation to the
minimum and maximum weights in the context table, %,
and t,,4.; hence,

(fmaa; - fmin) . (tz -

tmaz

+fmin_1

size(i) = [tmi”)w

- tmin

for t; > t,n and size(i) = frn otherwise.

A variety of alternative tag layout methods have been
proposed, such as tag flakes by Caro et al. [27]. Tag flakes
are used in order to provide context for tags as basic tag
clouds fail to show how the tags are related [27]. However,
instead of using a more complex visualization that depicts
the relationships between the tags, such as tag flakes or a
large Hasse diagram of a concept lattice, we use incremental
refinement in the tag cloud to provide context and structure to
the tag clouds. By selecting a tag in the tag cloud the resulting
cloud will provide background for the selected tag.

The initial tag cloud shown in ConceptCloud includes tags
from all attributes and objects in the context table (using the
top concept in the lattice as the focus). This allows the user to
select any tag from the extracted repository information. Tags
in the initial tag cloud will be at their largest size because
we scale all tags according the maximum and minimum tags
in this cloud. Making selections in the initial tag cloud will
result in clouds with smaller tags (cf. Fig. 1), indicating that

AllTests.java

Fig. 2: Multiple linked tag clouds of the JUnit Repository in ConceptCloud

the cloud is only showing attribute tags from a subset of the
total objects in the context table.

Since the initial tag cloud can be very large we provide
functionality to limit the tag cloud to one particular category
(e.g. commit authors), or to remove unwanted categories from
the cloud. The cloud can also be adjusted to show only a
certain number of tags or to show tags that occur more than
a given number of times. Since all the tags are textual, users
are also able to search in the tag cloud to find a tag if they
do initially know which tag they want to select (such as their
own commit name).

Customized visualizations can be created from the initial tag
cloud by selecting relevant tags and by moving categories of
tags into separate viewers. For example, Figure 2 shows a view
of the year, filename and author clouds for the JUnit repository
where the filename tag “AllTests.java” has been selected. The
visualization quickly shows in which years this file has been
changed, who has changed this file and what other files are
often changed in the same commit as this one.

Viewers can also be opened with a “sticky” tag that always
remains selected and cannot be deselected. This enables us to
open multiple parallel viewers with different tag selections in
the same category (such as months, cf. Fig. 5) which update
simultaneously when another tag is selected in any viewer.

A tag is implied if it has not been selected explicitly, but
corresponds to an attribute in the focus’ intent. Implied tags
thus reveal the repository’s internal structure, similar to the
way association rules reveal the implicit structure of shopping
baskets [28] but without any additional cost.

In addition to the interface customizations that can be per-
formed on the tag cloud there are also two customizations that
can be performed during construction, namely personalization
and filtering. A combination of these two customizations
allows us to produce a “vacation cloud” as described in Section
IV-C below.

60

A. Personalization in Tag Clouds

We can personalize a tag cloud for a particular developer
by identifying all tags that apply to that developer (e.g.,
files they have changed) in our pre-processing step. We then
assign these tags to different categories than the tags from the
remaining commits, and render them in a different color. In
the personalized tag cloud, the files that have been changed
by that particular developer will thus be identifiable in views
even when the tag for that developer has not been selected.

B. Filtering Tag Clouds

If we want to analyze only a particular section of a repos-
itory (e.g., only the portion since we started working on the
project) we can simply restrict the revision range from which
the context table is constructed. Our pre-processing offers
different ways of specifying the ranges of interest.

C. Customized Visualizations

The combination of filtering and personalization steps al-
lows ConceptCloud to answer the question “What happened
in my project while I was away?” with a vacation cloud as
for example shown in Fig. 3a. This is constructed from a
change-based context where file and method tags have been
personalized to the developer (here David Saff) and revisions
have been filtered by the date of his last commit.

The initial tag cloud shows in which revision most files were
changed (1856), when most changes happened (2014/06/18),
or which developers have made most changes (Alex Yursha
and Kevin Cooney, cf. Fig. 3a (i) and (ii)). Tag colors indicate
the corresponding categories and selected tags are shown in
red. The words from the commit messages indicate that most
changes were either pull requests or stylistic in nature, as
indicated by prominent tags such as “Change”, “Codingstyle”,
“Legacycodingstyle”, or “Remove”. However, the overall view
of the changes in Fig. 3a does not provide us with many
insights into the data and we refine the view by selecting tags

s @8 a a a B2 B

2 el | %

112 1856 18571859 1860 1861 1862 1865 1868 1871 1877 1878 1883 1885 2014 /06 / 18 2014/06/19 2014/06/22 2014/06/23
2014/06/242014/07/02 2014/07/242014/07/25 2014/07/27 2014/07/28 736 928 932 937 956 Actual Add Alex Yursha Atow
AllTests.java public Statement apply(Statement, Description) Assumption Assumptionviolationexception Being Beta BlockJUnit4ClassRunner.java public Throwable

call() Categories.java Change Classes ClassRequest.java Classrule CloudBees DEV@Cloud Code COd'I ngStyle private long currentNanoTime() Debug
Delegation protected void describeMismatchSafely(T, Description) public void describeTo(Description) Description Development Disable Disableondebug Doug Lawrie public

void duration() Error public void evaluate() public void evaluate() External F Factory public void failed() protected void failed(long, Throwable, Description)

protected void failed(long, Throwable, Description) public void failedTest() FailOnTimeout.java FailOnTimeoutTest.java Feature F]eld Filter Filterfactory

FilterRequest.java protected void finished(Description) protected void finished(long, Description) protected void finished(long, Description) Fixes FrameworkField.java

From private long getNanos() public Runner getRunner() public Description getTopLevelDescription() Hashcode public int hashCode() Inherited Instead

nternal Iteration Kay Kcooney KeV] n C00ney Launched LegacyCOd'i ngStyle Marc Philipp protected boolean matchesSafely(T) Maven

embers erge Mode NameS Next NON Overload Parameterizedassertionerror ParentRunner.java Pass public void performanceTest () Plugin Prele

Prepare public void presentAnnotationlsAvailable() Pull R4 Ran Refactor Release RE@MOVE Rename Request Rowan Hill Rowanhill Rule
Rulefieldvalidator RuleFieldvalidator.java Rulemembervalidator RuleMemberValidator.java RuleMemberValidatorTest. java public long runtime(TimeUnit) Should
Skipped public void skipped() protected void skipped(AssumptionViolatedException, Description) protected void skipped(long, AssumptionViolatedException,
Description) protected void skipped(long, AssumptionViolatedException, Description) public void skippedTest() private void starting() protected void

starting(Description) Static Stefan Birkner stefanbirkner private void stopping() Stopwatch Stopwatch.java StopwatchTest.java Strategy public void

succeeded() protected void succeeded(long, Description) protected void succeeded(long, Description) public void succeeds() public void successfulTest() Test

TestClass.java Testrules Testwatcher Timeout public String toString() USing Violation private static void logInfo(String, String, long) Watcher public void wrongDuration()

4

(a) JUnit: vacation cloud for David Saff.

BICHCHCHCYICYE - JeN - JEJ 1 E]
1856 2014/06/18 Add
Alex Yursha Change

COdi ngStyle protected void

describeMismatchSafely(T, Description) public
void describeTo(Description) public void

evaluate() F Field From public int
hashcode() LE€gacycodingstyle

protected boolean matchesSafely(T) N ames

Prefix Remove pubiic string
toString()

4

A‘HH‘O Qe a g -2
1861 1862 1868 1877 1878 1885 2014/06/19 2014/06/22 2014/06/23
2014/07/02 2014/07/25 736 932 956 Actual Add AllTests.java
Assumptionviolationexception Change Classes Code Delegation Description

Disableondebug public void duration() External Factory protected void failed(long, Throwable,

Description) Filter Filterfactory From public Runner getRunner() public Description
getTopLevelDescription() Inherited Instead Kay Kcooney KeVin Cooney
Merge Non overload Pass Pull Request Rowanhill Rule should Skipped

protected void skipped(AssumptionViolatedException, Description) protected void
skipped(long, AssumptionViolatedException, Description) protected void starting(Description)

Static Stopwatch Stopwatch.java StopwatchTest.java protected void succeeded(long,
Description) Testwatcher Using public void wrongDuration()

X G4 | x

(b) Changes by Alex Yursha (left) and Kevin Cooney (right).

Fig. 3: JUnit: vacation cloud for David Saff

in order to discover more. Selecting a developer gives a more
detailed view of their changes and selecting one of the most
active developers, Yursha, reveals that he has only commit-
ted one revision that contains stylistic changes. Alternatively
selecting Cooney reveals that he has merged in several pull
requests (cf. Fig. 3b) which contain changes to files that Saff
has previously worked on (such as “AllTests.java”). Selecting
further tags (e.g., “From” and “Rowanhill”) brings out further
details (e.g., about the pull requests from Hill). The cloud
also shows how often files and methods have been changed;
it uses different colors to distinguish changes in files also

61

changed by Saff from those in other files. We can therefore see
that the method “skipped” was a development hotspot during
Saff’s absence; we can further see that variants with different
signatures were added (shown in light grey), on top of the
changes to the variants that Saff has worked on (shown in
dark grey).

V. ILLUSTRATIVE CASE STUDIES

We perform case studies to show how ConceptCloud’s
visualizations can be used to gain insight into the development
process of one commercial and one open-source project.

A. Ruby on Rails Web Application

The second author analyzed the Git repository of a small
commercial development project which implements in Ruby
on Rails a crowd-funding website that handles donations for
solar lights. The repository contains 490 revisions in 219 files
with approximately 8900 lines of code that were developed
over a period of two months by seven developers.

The goal of this case study was to see whether the Concept-
Cloud browser can be used to quickly gain an understanding
of an unknown project’s organizational structure. We therefore
created a revision-based context, browsed the tag cloud for
approximately two hours and then checked our observations
with the project manager who confirmed them.

Project Activity: The commit time view (cf. Fig. 4a) shows
that the project had two major activity spikes (2014/1/14-15
and 2014/1/29-30); these coincide with project demonstrations
but the log messages do not reveal this. The second spike
is trailed by a number of commits on Saturday 2014/2/1, by
developer PP who works mostly on Saturdays (cf. Fig. 4f).

Developer Activity: The author view (cf. Fig. 4b) shows that
the project involves seven developers, with three developers
(CK, DR, PP) evenly sharing the main work load (80% of the
revisions) on the project. Selecting the respective names of
two developers (AE, GM) reveals (in the commit time view)
that these were only active towards the end of the project.

Developer Expertise: Selecting the keywords “merged”,
“pull” and “request” in the main cloud shows (in the au-
thor view, cf. Fig. 4c) that most Git pull requests were
merged by DR, followed by CK. This indicates that these
two developers are the main architects of the system. Se-
lecting DR and opening a directory view (cf. Fig. 4e) shows
that DR is mostly merging requests concerning files in the
app/controllers, app/models, and app/views directories and
is thus responsible for the system’s functionality, while CK
works mostly in the app/views and app/assets/stylesheets di-
rectory and is thus responsible for the system’s appearance.
However, deselecting the keywords and just selecting the
app/assets/stylesheets directory indicates that PP is actually
implementing most of the visual functionality.

Selecting individual keywords (e.g., “video” or “facebook’)
shows that the related parts of the system functionality were
implemented by one of the lead developers, often with the
support of a second developer to integrate the functionality
into the web pages (e.g., “video” by PP and GM, cf. Fig. 4d).

Conclusions: ~ We were able to extract the team struc-
ture and developer responsibilities from the repository; this
information is helpful for new team members. The category-
specific tag clouds were instrumental in gaining insight about
certain aspects of the project (e.g., developers) and finding
this information much more quickly. The multi-faceted visu-
alization allowed us to analyze and explore different aspects
of the information concurrently, which made observations
more obvious. The full tag cloud containing information from
all categories gives us a complementary unified view from
which we can re-direct our exploration after a navigation step.
Overall, our insights come from the incremental nature of the

62

< 3

v «

(b)

(a) (©)

(a) Cloud from all commit dates. (b) Cloud of all developers.

(c) Developers of “merged pull request”

»
397 398 399 400 404 408 439

440 461 463 73 75 84 Above Add Added APP app/assets app/assets/images
app/assets/javascripts

app/assets/stylesheets appassets/stylesheets/global

app/assets/stylesheets/pages

app:
app/models app/models/concerns
app/views
app/views/home

app/views/layouts
Auto Better Branch Button Center Changed config config/initializers

Decreased dev

Ensure Fix Link Master Merged mobite New overlay Playback Pull

Quality

Header

Request Set Text Using vendor

Vertically Video vieo Way Website

Youtube

(d) Cloud after selection of tag “Video”.
app app/assets app/assets/images

app/assets/javascripts app/assets/stylesheets
app/assets/stylesheets/global
app/assets/stylesheets/pages

app/controllers app/helpers appriobs
app/models app/modets/concerns
APP/ VIEWS wppsviewsicanact app/views/dashboard
app/views/hello app/views/home

app/views/layouts app/views/shared
app/views/static_pages conflg config/initializers

dev b tib/tasks e = spec spec/models vendor vendor/assets

endor/assets/stylesheets

(e ®
(e) Directory cloud of DR. (f) Weekdays of developer PP.

Fig. 4: Ruby on Rails website

A

v | 2002/03 < | ¥ | 2002/04

2002/04

TestRunner.java

A

4

#

2002/06

4

v

2002/06

TestRunner.java

4

Fig. 5: JUnit: author clouds (top); changes to TestRunner.java (bottom).

exploration: each step reveals a new view into the repository
and each view in turn suggests the next steps, through its most
prominent tags.

B. JUnit

JUnit is an open-source testing framework for Java which
has been used in other case studies [29], [30]. We are able
to repeat Weissgerber’s case study, which investigates devel-
oper roles up until 2006, here as the date ranges used are
provided in [29]. We created the revision-based context for
the JUnit project from its first revision in 03/12/2000 up until
26/02/2014 (1772 revisions).

Overview: In order to get an initial view of the project
we open a commit time view and restrict it to years. This
shows that project activity increases dramatically from the
first full year in 2001 until 2007 and remains relatively steady
thereafter. Selecting the year tag 2000 in the full cloud shows
us that developer EG (we follow [29] and only use developer
initials) started the project in December 2000. In an author
cloud for the first full year of development (2001) we see
that developers KB and EM join the project in 2001 but EG
remains the most prolific author in that year (cf. [29]).

Authors by Month: [29] looks specifically at the file changes
made in the months March to June 2002. To repeat this we
open viewers with “sticky tags” for March, April, and June
2002 (there was no commit in May 2002) and limit these to
show only author and file tags (cf. Fig. 5, top). Selecting an
author tag shows us which files the author has worked on in
each month. Fig. 5 shows KB’s contribution reduces in the
given period. The cloud for June 2002 shows the addition of
developers VB and CW to the project.

Selecting the file “TestRunner.java”, shows that both EG
and KB have changed this file in April 2002 and just EG in
June 2002 (cf. Fig 5 (bottom)). We also see that there are a
group of files which have been changed at the same time.

Conclusions: ConceptCloud allowed us to draw the same
conclusions as the dedicated tool presented in [29]. However,
in contrast to [29], it does not simply produce a static picture

63

TABLE I: Metrics for revision-based contexts

Indexing | Drawing
Project Type |O| |Al [I|| time(s)| time(s)
Case
Study 1 Git 4921 1,516 14,561 3.4 0.6
Subversive| SVN| 1,511 | 8,222 88,090 55.5 1.8
JUnit Git 1,905 5,959 66,242 8 1.9
Angular]S | Git 5,547| 9,055| 133,436 116.2 2.8
Spring Git 9,017 | 40,332| 540,813 434 14.8
Valgrind | SVN| 10,989 | 29,009 | 348,136 176.6 40
Django Git | 18,471 | 38,821 | 583,701 58.4 11
Moodle | Git | 69,550 | 154,834 |2,222,486 3332 45.7
DPorts Git | 155,627 (196,850 (2,917,269 | 2,049.9 892.8

but allows the user to refine the analysis, and access the other
information (e.g., log messages) that remains available.

VI. PERFORMANCE EVALUATION

We used ConceptCloud on a medium-sized server (64GB
RAM, 2 Xeon 8-core 2.0Ghz CPUs) to analyze several Git
and SVN repositories in order to evaluate its performance. We
created revision-based contexts; we used local clones of the
Git repositories but accessed the SVN repositories remotely.
Table I summarizes the characteristics of and runtimes for
these repositories. It shows the number of revisions |O], the
number of attributes |A|, and the size of the incidence relation
(i.e., the number of object/attribute pairs) |I|, as well as the
times taken to create the context table (i.e., indexing) and to
draw the full tag cloud for the repository.

We see that the indexing times are only a few seconds for
smaller repositories, and a few minutes for medium-sized ones;
even the largest repository with 155627 revisions requires only
34 minutes. Note that these times are not directly related to
either the size or the density (i.e., |I]) of the context tables but
are to a large extent determined by the (lexical) pre-processing.

The drawing times are given for the full tag cloud for the
repository, which contains |O|+|A| tags. The table thus gives
an indication of the initial load time in the worst case; in prac-
tice, we can limit the number of tags shown to substantially
improve this. Tag clouds become smaller with subsequent
navigation steps and will therefore be drawn substantially
faster; we also use caching to improve performance further.
Overall, navigation is instantaneous for small and medium
repositories, with some degradation on the initial clouds for
very large repositories.

Note also that drawing the initial cloud also requires us
to compute the defining concepts of all objects; however,
since we use an incremental lattice construction approach and
therefore never actually compute the full lattice, we do not
experience the large runtimes normally associated with FCA.

VII. RELATED WORK
A. Visualizing Software Repositories

Zaidman et al. [31] develop a change-history view and a
growth-history view to study the co-evolution of production
and test code. The change history view is a plot of the changed
files over the revisions of a project’s repository distinguishing
between production and text code.

Girba et al. use an “Ownership Map” visualization [32] in
order identify developer interaction in a project and develop-
ment patterns using the CVS log of a project. Girba et al. also
identify several behavioral patterns of developers, such as a
teamwork, takeover and cleaning and show how these can be
identified in their ownership map visualization.

Alonso et al [33] also use a tag cloud visualization to
display information from version control (CVS) repositories.
Their “expertise cloud visualization” creates a tag cloud of
commiters that are identified using rule-based classification on
CVS log information. Users are then able to select the names
in this cloud to display a cloud of the developer’s expertise.
The expertise cloud visualization [33] differs from that of
ConceptCloud as the different types of information can only be
displayed in separate clouds, meaning that the combinations of
tags a user can select are limited, as opposed to our underlying
concept lattice which only limits the available tag selections
to tags that will not cause an empty tag cloud to be displayed.

Codebook [2] is a social network inspired toolset to analyze
information implicitly contained in software repositories. Its
central data structure is a graph, where the nodes represent
the different artifact and actors (e.g., change set, developer),
and the edges represent the different relations between these
(e.g., contains, committer). This graph is built from different
sources including revision control systems, bulletin boards,
mails, and directory information. Results are displayed in a
web interface that provides a simple list including images of
people associated with the artifacts.

Hipikat [3] also monitors multiple information sources
(Bugzilla, CVS, email, newsgroups) and builds a uniform
artifact database. It has a number of heuristics (based on
text similarity and activity times) to create links between the
artifacts, and provides lists of related artifacts on request.

Hipikat queries are made using the Eclipse IDE and the results
are also displayed in a Hipikat list view Eclipse plugin.

Information Fragments [4] provide answers to developer’s
questions by combining subsets of relevant project informa-
tion. Information Fragments are comprised of nodes of differ-
ent types, such as a team member or work item. Node types are
similar to tag categories in ConceptCloud. The presentation of
results in [4] uses an Eclipse plugin and supports a counting
feature to get an overview of the number of occurrences of
nodes, to get for example, the number of items a developer
has been working on. Our tag cloud automatically gives the
user an overview of the number of occurrences of each item
as the tags are sized according to occurrence frequency.

B. Tag Cloud Visualizations of Software

Guido [34] includes a tag cloud to visualize names of types,
variables, parameters and methods in source code. Selecting
nodes in the graph visualization that Guido also provides
will highlight the corresponding tags in the tag cloud and
selecting a name in the tag cloud will highlight corresponding
source code elements in the graph view. The visualizations
are linked in Guido similarly to the multiple tag clouds that
update simultaneously in ConceptCloud. Anslow et al. use
a tag cloud to visualize the structure of Java class names
in [35]. Emerson et al. use tag clouds to visualize Java
methods and explore several different tag cloud layouts using
the TAGGLE tool [36]. TAGGLE extends basic tag cloud
views and allows highlighters to be associated with tags so
that if a tag is selected related tags in the cloud will be
highlighted. Tag clouds in TAGGLE are customizable, as they
are in ConceptCloud, with TAGGLE additionally allowing tag
layouts to be changed.

C. Tag Clouds and Navigation

Mesnage and Carmen use a Bayesian approach for navi-
gation in tag clouds that allows tags related to one or more
selected tags to be shown in the cloud, where previously clouds
could only be created for one selected tag [7]. Gwizdka and
Bakelaar look at displaying a tag cloud history, which allows
users to keep track of their previous navigation steps, when
clouds are used for pivot navigation [37]. This approach is not
directly applicable to our tag clouds since we use refinement
navigation where multiple tags can be selected. Hernandez et
al. use multiple linked tag clouds to browse semi-structured
clinical trial data [38]. These tag clouds are generated from the
results of an initial search query and each represent one facet
(e.g. medical condition), of the data. A multi-faceted view can
also be created in ConceptCloud by moving tag categories into
separate tag clouds.

D. Software and Formal Concept Analysis

Poshyvanyk and Marcus [39] use a combination of latent
semantic indexing and concept lattices to find methods that are
relevant to a bug report. Girba et al. [40] use concept analysis
to detect co-change patterns in revision control systems. Ob-
jects are packages, classes, or methods, while properties are

64

the validity of expressions over certain metrics of the objects
(e.g., number of classes, methods, or statements); the specific
expression is determined by which co-change pattern is to be
detected. Similar ideas could be integrated into our approach.

There have also been direct applications of formal concept
analysis to source code analysis and re-engineering [41], [42]
but these only consider an individual program, not a repository.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have developed an interactive browser for
revision control repositories which uses a novel combination of
formal concept lattices and tag clouds to make the information
implicitly contained in these repositories accessible to the user.

Our browser can thus be used to answer many difficult
questions such as “What has happened in this project while I
was away?”, “Which developers collaborate?”, or “What are
the co-changed methods?”. We have used the ConceptCloud
browser to repeat a previous case study [29] and to make
observations about the internal structure of a small commercial
development project.

We see several avenues for future work. We plan to add
functionality for indexing bug databases and combining these
contexts with contexts from revision control repositories, to
provide a more complete overview of a project, as done by
Codebook or Hipikat. We are currently working on a scripting
language so that specific layouts of viewers to be scripted;
this will simplify building custom visualizations (such as the
authors by year view) on top of the generic user interface. We
also plan to use ConceptCloud to visualize other aspects of
software such as class structure and method calls.

ACKNOWLEDGEMENTS

This research is funded in part by a STIAS Doctoral
Scholarship, NRF Grant 93582 and the MIH Media Lab.

REFERENCES
[1]
[2]

J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in FSE, 2006, pp. 23-34.

A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: discovering and
exploiting relationships in software repositories,” in ICSE (1), 2010, pp.
125-134.

D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A
project memory for software development,” IEEE TSE, 31(6), pp. 446—
465, 2005.

T. Fritz and G. C. Murphy, “Using information fragments to answer the
questions developers ask,” in ICSE (1). ACM, 2010, pp. 175-184.

R. W. White, B. Kules, S. M. Drucker, and m. schraefel, “Introduction,”
Commun. ACM, 49(4), pp. 36-39, Apr. 2006.

J. Sinclair and M. Cardew-Hall, “The folksonomy tag cloud: when is it
useful?” Journal of Information Science, 34(1), pp. 15-29, 2008.

C. S. Mesnage and M. J. Carman, “Tag navigation,” in SoSEA 2009,
ACM, 2009, pp. 29-32. .

R. Wille, “Restructuring lattice theory: an approach based on hierarchies
of concepts,” in Ordered sets, 1. Rival, Ed. Reidel, 1982, pp. 445-470.
B. Ganter and R. Wille, Formal concept analysis - mathematical
foundations. Springer, 1999.

B. A. Davey and H. A. Priestley, Introduction to Lattices and Order (2.
ed.). Cambridge University Press, 2002.

B. Fischer, “Specification-based browsing of software component li-
braries,” ASE, 7(2), pp. 179-200, 2000.

C. Lindig, “Concept-based component retrieval,” in Working Notes of the
1JCAI-95 Workshop: Formal Approaches to the Reuse of Plans, Proofs,
and Programs, 1995, pp. 21-25.

65

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]
(28]
[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

(38]

(391

[40]

[41]

[42]

C. Carpineto and G. Romano, “A lattice conceptual clustering system
and its application to browsing retrieval,” Machine learning, 24(2), pp.
95-122, 1996.

G. C. Murphy and D. Notkin, “Lightweight lexical source model
extraction,” ACM TOSEM., 5(3), pp. 262-292, 1996.

C. Van Rijsbergen, Information retrieval, Butterworths, 1979.

C. Manning, P. Raghavan, and H. Schiitze, Introduction to Information
Retrieval, Cambridge University Press, 2008.

G. J. Greene and B. Fischer, “Conceptcloud: A tagcloud browser for
software archives,” in FSE, 2014, pp. 759-762.

C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick, Version
Control with Subversion - The Standard in Open Source Version Control.
O’Reilly, 2008.

J. Loeliger and M. McCullough, Version Control with Git: Powerful
tools and techniques for collaborative software development. ” O’Reilly
Media, Inc.”, 2012.

D. N. Gétzmann, “Colibri/java,” http://code.google.com/p/colibri-java/,
2007.

M. E Porter, “An algorithm for suffix stripping,” Program: electronic
library and information systems, 14(3), pp. 130-137, 1980.

R. Navigli, “Word sense disambiguation: A survey,” ACM CSUR, 41(2),
2009.

G. Robles and J. M. Gonzalez-Barahona, “Developer identification
methods for integrated data from various sources,” SIGSOFT SEN, 30(4),
pp. 1-5, 2005.

C. Anslow, S. Marshall, J. Noble, and R. Biddle, “Sourcevis: Collabo-
rative software visualization for co-located environments,” in VISSOFT,
2013, pp. 1-10.

S. Lohmann, J. Ziegler, and L. Tetzlaff, “Comparison of tag cloud
layouts: Task-related performance and visual exploration,” in INTERACT
(1), 2009, pp. 392-404.

J. Schrammel, M. Leitner, and M. Tscheligi, “Semantically structured tag
clouds: An empirical evaluation of clustered presentation approaches,”
in CHI, 2009, pp. 2037-2040.

“Navigating within news collections using tag-flakes,” Journal of Visual
Languages and Computing, 22(2), pp. 120 — 139, 2011.

M. J. Zaki and M. Ogihara, “Theoretical foundations of association
rules,” in DKMD, 1998.

P. Weissgerber, M. Pohl, and M. Burch, “Visual data mining in software
archives to detect how developers work together,” in MSR, 2007, pp. 9—.
S. Thummalapenta and T. Xie, “Spotweb: Detecting framework hotspots
and coldspots via mining open source code on the web,” in ASE, 2008,
pp. 327-336.

A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen,
“Mining software repositories to study co-evolution of production &
test code,” in ICST. IEEE, 2008, pp. 220-229.

T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers
drive software evolution,” in /WPSE, 2005, pp. 113-122.

O. Alonso, P. T. Devanbu, and M. Gertz, “Expertise identification and
visualization from cvs,” in MSR, 2008, pp. 125-128.

R. Cottrell, B. Goyette, R. Holmes, R. Walker, and J. Denzinger,
“Compare and contrast: Visual exploration of source code examples,”
in VISSOFT, 2009, pp. 29-32.

C. Anslow, J. Noble, S. Marshall, and E. Tempero, “Visualizing the
word structure of java class names,” in OOPSLA Companion , 2008,
pp. 777-778.

J. Emerson, N. Churcher, and C. Deaker, “From toy to tool: Extending
tag clouds for software and information visualisation,” in Australian
Software Engineering Conference, 2013, pp. 155-164.

J. Gwizdka and P. Bakelaar, “Tag trails: navigation with context and
history,” in CHI’09. ACM, 2009, pp. 4579-4584.

M.-E. Hernandez, S. M. Falconer, M.-A. Storey, S. Carini, and I. Sim,
“Synchronized tag clouds for exploring semi-structured clinical trial
data,” in CASCON,. ACM, 2008, pp. 4:42-4:56.

D. Poshyvanyk and A. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in ICPC,
2007, pp. 37-48.

T. Girba, S. Ducasse, A. Kuhn, R. Marinescu, and R. Daniel, “Using
concept analysis to detect co-change patterns,” in /IWPSE, pp. 83-89,
2007.

G. Snelting, “Reengineering of configurations based on mathematical
concept analysis,” ACM TOSEM., 5(2), pp. 146-189, 1996.

G. Snelting and F. Tip, “Reengineering class hierarchies using concept
analysis,” SIGSOFT SEN, 23(6), 1998, pp. 99-110.

